全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Efficacy of Vectron 20?WP, Etofenprox, for Indoor Residual Spraying in Areas of High Vector Resistance to Pyrethroids and Organochlorines in Zambia

DOI: 10.5402/2013/371934

Full-Text   Cite this paper   Add to My Lib

Abstract:

The selection of insecticide resistance in malaria vectors has the potential to compromise any insecticide-based vector control programme. To ensure that the insecticides used for indoor residual spraying and insecticide-treated nets in Zambia remain effective and their choice is evidence based, insecticide resistance surveillance and monitoring are essential. This study assessed and compared the residual efficacy of etofenprox (Vectron 20?WP), an ether pyrethroid, at 0.1?g/m2 with pyrethroids: bifenthrin (Bistar 10?WP) and lambda-cyhalothrin (Icon 10 CS) at 25?mg/m2 for indoor residual spraying. We also assessed the resistance status of etofenprox to local malaria vectors, An. funestus s.s and An. gambiae s.s, using World Health Organization standard protocols. The residual efficacy of Vectron 20?WP on cement, rendered walls of houses lasted for four months with 100% mortality. By the eighth month, the killing effect had reduced to 73.8% compared to 63.3% for bifenthrin and 77.0% for lambda-cyhalothrin. Susceptibility tests using standard World Health Organization assays on An. gambiae s.s showed susceptibility to etofenprox (0.1%) but some resistance was detected to Anopheles funestus s.s. The product is recommended as an ideal insecticide for indoor residual spraying for malaria control in Zambia as part of a resistance management programme in selected areas of the country. 1. Introduction Globally, about 515 million malaria cases with over one million deaths occur annually in tropical and subtropical regions [1]. The greatest toll is exacted in sub-Saharan Africa, particularly in children and pregnant women [2, 3]. This huge burden of disease is as a consequence of the excellent vectorial competence of the three major vectors of malaria: Anopheles gambiae s.s, Anopheles arabiensis, and Anopheles funestus [4, 5]. Malaria remains a major public health challenge and continues to severely undermine the socioeconomic growth in sub-Saharan Africa [6]. In the absence of a vaccine, much of the malaria control efforts rely primarily on effective treatment with antimalaria drugs and prevention through transmission-blocking vector control interventions [7, 8]. Nevertheless, effectiveness of malaria control is threatened by the increasing levels of both drug resistance in Plasmodium parasites [9] and insecticide resistance in Anopheles vectors [10]. The main thrust contemporary vector control interventions, that is, indoor residual spraying (IRS) and insecticide treated nets (ITNs), are insecticide based [11]. However, the arsenal of insecticides is so limited

References

[1]  J. G. Breman, M. S. Alilio, and A. Mills, “Conquering the intolerable burden of malaria: what's new, what's needed: a summary,” American Journal of Tropical Medicine and Hygiene, vol. 71, no. 2, pp. 1–15, 2004.
[2]  R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, and S. I. Hay, “The global distribution of clinical episodes of Plasmodium falciparum malaria,” Nature, vol. 434, no. 7030, pp. 214–217, 2005.
[3]  C. A. Guerra, R. W. Snow, and S. I. Hay, “Mapping the global extent of malaria in 2005,” Trends in Parasitology, vol. 22, no. 8, pp. 353–358, 2006.
[4]  J. C. Beier, G. F. Killen, and J. I. Githure, “Short report: entomologic innoculation rates and Plasmodium falciparum malaria prevalence in Africa,” The American Journal of Tropical Medicine and Hygiene, vol. 61, pp. 109–113, 1999.
[5]  S. I. Hay, D. J. Rogers, J. F. Toomer, and R. W. Snow, “Annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa: literature survey, Internet access and review,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 94, no. 2, pp. 113–127, 2000.
[6]  S. I. Hay, D. L. Smith, and R. W. Snow, “Measuring malaria endemicity from intense to interrupted transmission,” The Lancet Infectious Diseases, vol. 8, no. 6, pp. 369–378, 2008.
[7]  U. Fillinger, K. Kannady, G. William et al., “A tool box for operational mosquito larval control: preliminary results and early lessons from the Urban Malaria Control Programme in Dar es Salaam, Tanzania,” Malaria Journal, vol. 7, article 20, 2008.
[8]  B. L. Sharp, F. C. Ridl, D. Govender, J. Kuklinski, and I. Kleinschmidt, “Malaria vector control by indoor residual insecticide spraying on the tropical island of Bioko, Equatorial Guinea,” Malaria Journal, vol. 6, article 52, 2007.
[9]  “WHO, Africa Malaria Report 2003, Geneva, World Health Organization,” Document WHO/CDS/MAL/2003, 1093, 2003.
[10]  H. Ranson, H. Abdallah, A. Badolo et al., “Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem,” Malaria Journal, vol. 8, no. 1, article 299, 2009.
[11]  E. Chanda, F. Masaninga, M. Coleman et al., “Integrated vector management: the Zambian experience,” Malaria Journal, vol. 7, article 164, 2008.
[12]  WHOPES a and WHO Pesticides Evaluation Scheme (WHOPES), “WHO recommended insecticides for indoor residual spraying against malaria vectors,” 2007, http://www.who.int/malaria/cmcupload/0/000/012/ 604/IRSInsecticides.htm.
[13]  WHOPES b and WHO Pesticide Evaluation Scheme (WHOPES), “WHO recommended insecticide products treatment of mosquito nets for malaria vector,” 2007, http://www.who.int/whopes/en/.
[14]  F. H. Collins, L. Kamau, H. A. Ranson, and J. M. Vulule, “Molecular entomology and prospects for malaria control,” Bulletin of the World Health Organization, vol. 78, no. 12, pp. 1412–1423, 2000.
[15]  J. Hemingway and H. Ranson, “Insecticide resistance in insect vectors of human disease,” Annual Review of Entomology, vol. 45, pp. 371–391, 2000.
[16]  M. Coleman and J. Hemingway, “Insecticide resistance monitoring and evaluation in disease transmitting mosquitoes,” Journal of Pesticide Science, vol. 32, no. 2, pp. 69–76, 2007.
[17]  E. Chanda, J. Hemingway, I. Kleinschmidt, et al., “Insecticide resistance and the future of malaria control in Zambia,” PLoS ONE, vol. 6, no. 9, Article ID e24336, 2011.
[18]  “WHO, Report of the third WHOPES working group meeting, Review of Deltamethrin 1% SC and 25% WT,” Etofenprox 10% EC and 10% EW, 1999.
[19]  U. Sreehari, P. K. Mittal, R. K. Razdan, A. P. Dash, and M. A. Ansari, “Impact of etofenprox (Vectron 20 WP) indoor residual spray on malaria transmission,” Indian Journal of Medical Research, vol. 129, no. 5, pp. 593–598, 2009.
[20]  J. Hemingway, “Efficacy of etofenprox against insecticide susceptible and resistant mosquito strains containing characterized resistance mechanisms,” Medical and Veterinary Entomology, vol. 9, no. 4, pp. 423–426, 1995.
[21]  CSO, Central Statistical Office, “Zambia National Census Report 2000, 2000”.
[22]  MoH, “National Guidelines for Indoor Residual Spraying in Zambia,” Ministry of Health, Luasaka. Zambia, 2009.
[23]  W.H.O., “Test Procedures for Insecticide Resistance Monitoring in Malaria Vectors, Bio-efficacy and Persistence of insecticides in treated surfaces. Report of the WHO Informal Consultation,” WHO/CDS/CPC/MAL/98.12, World Health Organization, Geneva, Switzerland, 1998.
[24]  WHO, “Instructions for the Bioassay of Insecticidal Deposits on Wall Surfaces,” Geneva, World Health Organization, 1981, WHO/VBC/81.5, 1981.
[25]  M. T. Gillies and B. DeMeillon, “The Anophelinae of Africa South of the Sahara,” The South African Institute for Medical Research, 1968.
[26]  M. T. Gillies and M. A. Coetzee, “supplement to: The Anophelinae of Africa South of the Sahara,” The South African Institute for Medical Research, 1987.
[27]  L. L. Koekemoer, L. Kamau, R. H. Hunt, and M. Coetzee, “A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group,” American Journal of Tropical Medicine and Hygiene, vol. 66, no. 6, pp. 804–811, 2002.
[28]  J. A. Scott, W. G. Brogdon, and F. H. Collins, “Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction,” American Journal of Tropical Medicine and Hygiene, vol. 49, no. 4, pp. 520–529, 1993.
[29]  MoH, “National Malaria Situation Analysis.Ministry of Health,” Lusaka.Zambia, Lusaka, 2000.
[30]  MoH, “Zambia National Malaria Programme Performance Review 2010,” Ministry of Health, Lusaka, Zambia, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133