全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Green Tea Mouthwash on Oral Malodor

DOI: 10.5402/2013/975148

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study aimed to determine the effect of green tea mouthwash on oral malodor, plaque, and gingival inflammation. Gingivitis subjects who had over 80 parts per billion of volatile sulfur compounds (VSC) in the morning breath were randomly assigned into green tea or placebo mouthwash group. At baseline, VSC, Plaque Index (PI) and Papillary Bleeding Index (PBI) were recorded. Participants were rinsed with the assigned mouthwash, and VSC level was remeasured at 30 minutes and 3 hours postrinsing. For the following 4 weeks, participants were asked to rinse with the assigned mouthwash twice daily. VSC, PI and PBI were remeasured at day 28. It was found that, at 30 minutes and 3 hours postrinsing, VSC was reduced by 36.76% and 33.18% in the green tea group and 19.83% and 9.17% in the placebo group, respectively. At day 28, VSC was reduced by 38.61% in the green tea group and 10.86% in the placebo group. VSC level in the green tea group was significantly different when compared to the placebo. PI and PBI were significantly reduced in both groups. However, no significant difference was found between groups. In conclusion, green tea mouthwash could significantly reduce VSC level in gingivitis subjects after rinsing for 4 weeks. 1. Introduction Oral malodor is defined as an unpleasant breath odor whose causes originate from the mouth. This condition is caused mainly by the emanation of volatile sulfur compounds (VSC) especially hydrogen sulfide, methyl mercaptan, and dimethyl sulfide through the mouth air. These foul-smelling compounds are produced through the degradation of sulfur-containing amino acids by anaerobic Gram-negative bacteria. Other odoriferous compounds, for example, indole and cadaverine are also reported to cause oral malodor [1]. Oral malodor was found to correlate with periodontal disease. Quirynen et al. [2] found that 11% of 2,000 patients who suffered from bad breath had periodontal health problem. Takeuchi et al. [3] reported a positive association between periodontal parameters and the severity of oral malodor. The increase in oral malodor in subjects with periodontal disease is attributed to a higher number of Gram-negative, periodontal bacteria within the oral cavity. These bacteria including Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, Tannerella forsythia, and Eubacterium species and spirochetes are known to produce significant amount of VSC [4]. In addition, desquamated cells or blood elements from the inflamed gingival tissue can provide sources for microbial putrefaction. In contrast, oral malodor was

References

[1]  M. Quirynen and D. van Steenberghe, “Oral malodor,” in Carranza's Clinical Periodontology, M. G. Newman, H. H. Takei, P. R. Klokkevold, and F. A. Carranza, Eds., pp. 330–342, Saunders, Elsevier, St. Louis, Mo, USA, 10th edition, 2006.
[2]  M. Quirynen, J. Dadamio, S. van den Velde et al., “Characteristics of 2000 patients who visited a halitosis clinic,” Journal of Clinical Periodontology, vol. 36, no. 11, pp. 970–975, 2009.
[3]  H. Takeuchi, M. MacHigashira, D. Yamashita et al., “The association of periodontal disease with oral malodour in a Japanese population,” Oral Diseases, vol. 16, no. 7, pp. 702–706, 2010.
[4]  S. Persson, M. B. Edlund, R. Claesson, and J. Carlsson, “The formation of hydrogen sulfide and methyl mercaptan by oral bacteria,” Oral Microbiology and Immunology, vol. 5, no. 4, pp. 195–201, 1990.
[5]  Y. Fukui, K. Yaegaki, T. Murata et al., “Diurnal changes in oral malodour among dental-office workers,” International Dental Journal, vol. 58, no. 3, pp. 159–166, 2008.
[6]  E. G. Winkel, S. Roldán, A. J. van Winkelhoff, D. Herrera, and M. Sanz, “Clinical effects of a new mouthrinse containing chlorhexidine, cetylpyridinium chloride and zinc-lactate on oral halitosis: a dual-center, double-blind placebo-controlled study,” Journal of Clinical Periodontology, vol. 30, no. 4, pp. 300–306, 2003.
[7]  S. Rassameemasmaung, A. Sirikulsathean, C. Amornchat, K. Hirunrat, P. Rojanapanthu, and W. Gritsanapan, “Effects of herbal mouthwash containing the pericarp extract of Garcinia mangostana L on halitosis, plaque and papillary bleeding index,” Journal of the International Academy of Periodontology, vol. 9, no. 1, pp. 19–25, 2007.
[8]  M. Hirasawa, K. Takada, M. Makimura, and S. Otake, “Improvement of periodontal status by green tea catechin using a local delivery system: a clinical pilot study,” Journal of Periodontal Research, vol. 37, no. 6, pp. 433–438, 2002.
[9]  S. Sakanaka, M. Aizawa, M. Kim, and T. Yamamoto, “Inhibitory effects of green tea polyphenols on growth and cellular adherence of an oral bacterium, Porphyromonas gingivalis,” Bioscience, Biotechnology and Biochemistry, vol. 60, no. 5, pp. 745–749, 1996.
[10]  M. Makimura, M. Hirasawa, K. Kobayashi et al., “Inhibitory effect of tea catechins on collagenase activity,” Journal of Periodontology, vol. 64, no. 7, pp. 630–636, 1993.
[11]  M. Okamoto, A. Sugimoto, K. P. Leung, K. Nakayama, A. Kamaguchi, and N. Maeda, “Inhibitory effect of green tea catechins on cysteine proteinases in Porphyromonas gingivalis,” Oral Microbiology and Immunology, vol. 19, no. 2, pp. 118–120, 2004.
[12]  M. Okamoto, K. P. Leung, T. Ansai, A. Sugimoto, and N. Maeda, “Inhibitory effects of green tea catechins on protein tyrosine phosphatase in Prevotella intermedia,” Oral Microbiology and Immunology, vol. 18, no. 3, pp. 192–195, 2003.
[13]  P. Lodhia, K. Yaegaki, A. Khakbaznejad et al., “Effect of green tea on volatile sulfur compounds in mouth air,” Journal of Nutritional Science and Vitaminology, vol. 54, no. 1, pp. 89–94, 2008.
[14]  H. N. Graham, “Green tea composition, consumption, and polyphenol chemistry,” Preventive Medicine, vol. 21, no. 3, pp. 334–350, 1992.
[15]  W. T. Wozniak, “The ADA guidelines on oral malodor products,” Oral Diseases, vol. 11, no. 1, pp. 7–9, 2005.
[16]  M. D. Carvalho, C. M. Tabchoury, J. A. Cury, S. Toledo, and G. R. Nogueira-Filho, “Impact of mouthrinses on morning bad breath in healthy subjects,” Journal of Clinical Periodontology, vol. 31, no. 2, pp. 85–90, 2004.
[17]  J. Silness and H. L?e, “Periodontal disease in pregnancy. II. Correlation between oral hygiene and periodontal condition,” Acta Odontologica Scandinavica, vol. 22, pp. 121–135, 1964.
[18]  U. P. Saxer and H. R. Mühlemann, “Motivation und Aufklarung,” Schweizen Monatlischeschrift Zahnheilkunde, vol. 85, no. 9, pp. 905–919, 1975.
[19]  H. Yasuda and T. Aragawa, “Deodorizing mechanism of (-)-epigallocatechin gallate against methyl mercaptan,” Bioscience Biotechnology and Biochemistry, vol. 59, pp. 1232–1236, 1995.
[20]  M. Rosenberg, I. Septon, I. Eli et al., “Halitosis measurement by an industrial sulphide monitor,” Journal of Periodontology, vol. 62, no. 8, pp. 487–489, 1991.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133