Background. Hypertensive disease is increasing in developing countries due to nutritional transition and westernization. Hypertensive disease among Kenya military may be lower because of health-focused recruitment, physical activities, routine checkups, and health awareness and management, but the disease has been increasing. Purpose. The purpose of this study was to determine physiological, behavioral, and dietary characteristics associated with hypertension among Kenyan military. Methods. A cross-sectional study involving 340 participants was conducted at Armed Forces Memorial Hospital. Participants' history, risk factors assessment, and dietary patterns were obtained by structured questionnaire, while physiological and anthropometric parameters were measured. Results. Hypertensive participants were likely to have higher age, physiological, and anthropometric measurements, and they participated in peace missions. Daily alcohol and smoking, frequent red meat, and inadequate fruits and vegetables were associated with hypertension. Conclusions. The findings mimic the main risk factors and characteristics for hypertensive disease in developed countries whose lifestyle adoption is happening fast in low and middle-income countries. Whether or not prediction rules and/or risk scores may identify at-risk individuals for preventive strategy for targeted behavioral interventions among this population require investigation. 1. Introduction Cardiovascular diseases (CVD), among them hypertensive disease, is causing significant morbidity and mortality in adult population globally [1]. Hypertensive disease is considered in case of untreated systolic blood pressure (BP) of greater than or equal to 140?mmHg and/or diastolic BP of greater than or equal to 90?mmHg or one being on antihypertensive medication [2]. The disease is among the leading causes of death and disability [3, 4], and its prevalence is increasing worldwide [5] particularly in developing countries as a result of nutritional transition [1] and westernization. Hypertensive disease is a significant contributor [6, 7] to the increasing incidence and mortality as a result of CVD globally. Sub-Saharan Africa appears to bear the heaviest burden of this preventable disease as an emerging threat; for instance, in Cameroon, the prevalence rose from 8.3% in 1994 to 20.8% in 2004 among the adult urban dwellers [8]. In Kenya, available data shows that the disease is gaining momentum and has been identified as an important cause of morbidity and mortality in urban population amidst high prevalence of communicable
References
[1]
A. Chockalingam, N. R. Campbell, and J. G. Fodor, “Worldwide epidemic of hypertension,” Canadian Journal of Cardiology, vol. 22, no. 7, pp. 553–555, 2006.
[2]
A. V. Chobanian, G. L. Bakris, H. R. Black et al., “The seventh report of the joint National Committee on prevention, detection, evaluation and treatment of high blood pressure,” Hypertension, vol. 42, no. 6, pp. 1206–1252, 2003.
[3]
M. Godwin, A. Pike, A. Kirby, C. Jewer, and L. Murphy, “Prehypertension and hypertension in a primary care practice,” Canadian Family Physician, vol. 54, no. 10, pp. 1418–1423, 2008.
[4]
J. He, D. Gu, J. Chen, et al., “Premature deaths attributable to blood pressure in China: a prospective cohort study,” The Lancet, vol. 374, pp. 1765–1772, 2009.
[5]
M. Pereira, N. Lunet, A. Azevedo, and H. Barros, “Differences in prevalence, awareness, treatment and control of hypertension between developing and developed countries,” Journal of Hypertension, vol. 27, no. 5, pp. 963–975, 2009.
[6]
T. A. Gaziano, A. Bitton, S. Anand, S. Abrahams-Gessel, and A. Murphy, “Growing epidemic of coronary heart disease in low- and middle-income countries,” Current Problems in Cardiology, vol. 35, no. 2, pp. 72–115, 2010.
[7]
B. V. Mittal and A. K. Singh, “Hypertension in the developing world: challenges and opportunities,” American Journal of Kidney Diseases, vol. 55, no. 3, pp. 590–598, 2010.
[8]
A. P. Kengne, P. K. Awah, L. Fezeu, and J. C. Mbanya, “The burden of high blood pressure and related risk factors in urban Sub-Saharan Africa: evidences from Douala in Cameroon,” African Health Sciences, vol. 7, no. 1, pp. 38–44, 2007.
[9]
W. Mathenge, A. Foster, and H. Kuper, “Urbanization, ethnicity and cardiovascular risk in a population in transition in Nakuru, Kenya: a population-based survey,” BMC Public Health, vol. 10, article 569, 2010.
[10]
S. J. Suheil, “Risk factors for hypertension among urban males in Mombasa Kenya,” Official publication of the Tanzania Medical Students Association, 2007.
[11]
J. O. Jowi and P. M. Mativo, “Pathological sub-types, risk factors and outcome of stroke at the Nairobi hospital, Kenya,” East African Medical Journal, vol. 85, no. 12, pp. 572–581, 2008.
[12]
K. E. Friedl, S. J. Grate, S. P. Proctor, J. W. Ness, B. J. Lukey, and R. L. Kane, “Army research needs for automated neuropsychological tests: Monitoring soldier health and performance status,” Archives of Clinical Neuropsychology, vol. 22, no. 1, pp. S7–S14, 2007.
[13]
M. Cloeren and T. M. Mallon, “Managing workers' compensation costs in the military setting: the army's story,” Clinics in Occupational and Environmental Medicine, vol. 4, no. 2, pp. 323–339, 2004.
[14]
W. L. Haskell, I. M. Lee, R. R. Pate et al., “Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association,” Circulation, vol. 116, no. 9, pp. 1081–1093, 2007.
[15]
M. Kivim?ki, M. Virtanen, M. Elovainio, A. Kouvonen, A. V??n?nen, and J. Vahtera, “Work stress in the etiology of coronary heart disease—a meta-analysis,” Scandinavian Journal of Work, Environment and Health, vol. 32, no. 6, pp. 431–442, 2006.
[16]
S. Lee, G. Colditz, L. Berkman, and I. Kawachi, “A prospective study of job strain and coronary heart disease in US women,” International Journal of Epidemiology, vol. 31, no. 6, pp. 1147–1153, 2002.
[17]
H. Bosma, R. Peter, J. Siegrist, and M. Marmot, “Two alternative job stress models and the risk of coronary heart disease,” American Journal of Public Health, vol. 88, no. 1, pp. 68–74, 1998.
[18]
B. C. Nindl, C. D. Leone, W. J. Tharion et al., “Physical performance responses during 72?h of military operational stress,” Medicine and Science in Sports and Exercise, vol. 34, no. 11, pp. 1814–1822, 2002.
[19]
M. W. Parker, G. F. Fuller, H. G. Koenig et al., “Soldier and family wellness across the life course: a developmental model of successful aging, spirituality, and health promotion, part II,” Military Medicine, vol. 166, no. 7, pp. 561–570, 2001.
[20]
T. A. Gaziano, C. R. Young, G. Fitzmaurice, S. Atwood, and J. M. Gaziano, “Laboratory-based versus non-laboratory-based method for assessment of cardiovascular disease risk: the NHANES I Follow-up Study cohort,” The Lancet, vol. 371, no. 9616, pp. 923–931, 2008.
[21]
A. Jenson, A. L. Omar, M. A. Omar, A. S. Rishad, and K. Khoshnood, “Assessment of hypertension control in a district of Mombasa, Kenya,” Global Public Health, vol. 6, no. 3, pp. 293–306, 2011.
[22]
W. Wang, E. T. Lee, R. R. Fabsitz et al., “A longitudinal study of hypertension risk factors and their relation to cardiovascular disease: the strong heart study,” Hypertension, vol. 47, no. 3, pp. 403–409, 2006.
[23]
M. A. Tedesco, G. di Salvo, S. Caputo et al., “Educational level and hypertension: how socioeconomic differences condition health care,” Journal of Human Hypertension, vol. 15, no. 10, pp. 727–731, 2001.
[24]
F. D. Fuchs, L. E. Chambless, P. K. Whelton, F. J. Nieto, and G. Heiss, “Alcohol consumption and the incidence of hypertension: the atherosclerosis risk in communities study,” Hypertension, vol. 37, no. 5, pp. 1242–1250, 2001.
[25]
J. M. Nú?ez-Córdoba, M. A. Martínez-González, E. Toledo, M. Bes-Rastrollo, J. J. Beunza, and A. Alonso, “Alcohol consumption and the incidence of hypertension in a Mediterranean cohort, The SUN study,” Revista Espa?ola de Cardiología, vol. 62, pp. 633–641, 2009.
[26]
Y. Kawano, “Physio-pathological effects of alcohol on the cardiovascular system: its role in hypertension and cardiovascular disease,” Hypertension Research, vol. 33, no. 3, pp. 181–191, 2010.
[27]
X. Xin, J. He, M. G. Frontini, L. G. Ogden, O. I. Motsamai, and P. K. Whelton, “Effects of alcohol reduction on blood pressure: a meta-analysis of randomized controlled trials,” Hypertension, vol. 38, no. 5, pp. 1112–1117, 2001.
[28]
G. Mancia, G. de Backer, A. Dominiczak et al., “2007 guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC),” Journal of Hypertension, vol. 25, no. 6, pp. 1105–1187, 2007.
[29]
D. Wenzel, J. M. P. de Souza, and S. B. de Souza, “Prevalence of arterial hypertension in young military personnel and associated factors,” Revista de Saude Publica, vol. 43, no. 5, pp. 789–795, 2009.
[30]
N. I. Parikh, M. J. Pencina, T. J. Wang et al., “A risk score for predicting near-term incidence of hypertension: the Framingham Heart Study,” Annals of Internal Medicine, vol. 148, no. 2, pp. 102–110, 2008.
[31]
T. S. Bowman, J. M. Gaziano, J. E. Buring, and H. D. Sesso, “A prospective study of cigarette smoking and risk of incident hypertension in women,” Journal of the American College of Cardiology, vol. 50, no. 21, pp. 2085–2092, 2007.
[32]
L. J. Appel, T. J. Moore, E. Obarzanek, et al., “A clinical trial of the effects of dietary patterns on blood pressure. DASH collaborative research group,” The New England Journal of Medicine, vol. 336, pp. 1117–1124, 1997.
[33]
K. Miura, P. Greenland, J. Stamler, K. Liu, M. L. Daviglus, and H. Nakagawa, “Relation of vegetable, fruit, and meat intake to 7-year blood pressure change in middle-aged men: the Chicago western electric study,” American Journal of Epidemiology, vol. 159, no. 6, pp. 572–580, 2004.
[34]
M. T. Utsugi, T. Ohkubo, M. Kikuya et al., “Fruit and vegetable consumption and the risk of hypertension determined by self measurement of blood pressure at home: the Ohasama study,” Hypertension Research, vol. 31, no. 7, pp. 1435–1443, 2008.
[35]
L. R. Harriss, D. R. English, J. Powles et al., “Dietary patterns and cardiovascular mortality in the Melbourne Collaborative Cohort Study,” The American Journal of Clinical Nutrition, vol. 86, no. 1, pp. 221–229, 2007.
[36]
J. W. Erdman Jr., D. Balentine, L. Arab et al., “Flavonoids and heart health: proceedings of the ILSI North America Flavonoids Workshop, May 31–June 1, 2005, Washington, DC,” Journal of Nutrition, vol. 137, no. 3, pp. S718–S737, 2007.
[37]
L. Yuchum, L. H. Kushi, K. Meyer, and A. R. Folsom, “Dietary flavonoids intake and risk of cardiovascular disease in post menopausal women,” American Journal of Epidemiology, vol. 149, pp. 943–949, 1999.
[38]
I. C. Arts and P. C. Hollman, “Polyphenols and disease risk in epidemiologic studies,” The American Journal of Clinical Nutrition, vol. 81, pp. S317–S325, 2005.
[39]
L. Hooper, P. A. Kroon, E. B. Rimm et al., “Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials,” The American Journal of Clinical Nutrition, vol. 88, no. 1, pp. 38–50, 2008.
[40]
P. J. Mink, C. G. Scrafford, L. M. Barraj et al., “Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women,” The American Journal of Clinical Nutrition, vol. 85, no. 3, pp. 895–909, 2007.
[41]
R. M. Touyz and E. L. Schiffrin, “Reactive oxygen species in vascular biology: implications in hypertension,” Histochemistry and Cell Biology, vol. 122, no. 4, pp. 339–352, 2004.
[42]
L. J. Appel, M. W. Brands, S. R. Daniels, N. Karanja, P. J. Elmer, and F. M. Sacks, “Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association,” Hypertension, vol. 47, no. 2, pp. 296–308, 2006.
[43]
A. Nkondjock and E. Bizome, “Dietary patterns associated with hypertension prevalence in the Cameroon defence forces,” European Journal of Clinical Nutrition, vol. 64, no. 9, pp. 1014–1021, 2010.
[44]
S. S. de Ramirez, D. A. Enquobahrie, G. Nyadzi et al., “Prevalence and correlates of hypertension: a cross-sectional study among rural populations in sub-Saharan Africa,” Journal of Human Hypertension, vol. 24, no. 12, pp. 786–795, 2010.
[45]
A. Choudhury and G. Y. H. Lip, “Exercise and hypertension,” Journal of Human Hypertension, vol. 19, no. 8, pp. 585–587, 2005.
[46]
M. R. Carnethon, N. S. Evans, T. S. Church et al., “Joint associations of physical activity and aerobic fitness on the development of incident hypertension: coronary artery risk development in young adults,” Hypertension, vol. 56, no. 1, pp. 49–55, 2010.
[47]
R. H. Fagard and V. A. Cornelissen, “Effect of exercise on blood pressure control in hypertensive patients,” European Journal of Cardiovascular Prevention and Rehabilitation, vol. 14, no. 1, pp. 12–17, 2007.
[48]
R. P. Gelber, J. M. Gaziano, J. E. Manson, J. E. Buring, and H. D. Sesso, “A prospective study of body mass index and the risk of developing hypertension in men,” American Journal of Hypertension, vol. 20, no. 4, pp. 370–377, 2007.
[49]
G. de Simone, R. B. Devereux, M. Chinali et al., “Risk factors for arterial hypertension in adults with initial optimal blood pressure: the strong heart study,” Hypertension, vol. 47, no. 2, pp. 162–167, 2006.
[50]
N. S. Granado, T. C. Smith, G. M. Swanson et al., “Newly reported hypertension after military combat deployment in a large population-based study,” Hypertension, vol. 54, no. 5, pp. 966–973, 2009.