Working conditions in the construction industry have improved in many industrialized countries, but heavy physical work with recurrent exposure to chemical agents, dust, and climatic influences still represents considerable risk for construction workers and may affect their health. The aim of this review is to analyze available data of the literature on allergy-related respiratory and skin disorders with emphasis on a preventive appraisal in order to produce statements and recommendations based on research evidence. The most common agents involved in the construction industry as a cause of occupational asthma (OA) in industrialized countries are isocyanates, wood dust, resins, glues, cobalt, and chromium. Allergic contact dermatitis (ACD) is an immunologic cell-mediated response to a sensitizing agent and the most common sensitizing agents associated with construction workers are epoxy resins, thiurams and thiazoles, and chromates. Medical surveillance must consider individual risk factors such as differences in individual susceptibility and sensitization to agents at workplace. Once work-related disorder is confirmed, adequate fitness for work should be assessed for the worker impaired by health condition. A reliable diagnosis of an index case is a sentinel event that may reveal risks for workers with similar exposure, leading to a revised risk assessment at the workplace that should reduce the risk and prevent further cases. 1. Introduction Construction industry plays a major role in the economic growth of a nation and construction workers are at increased risk of work-related disorders worldwide [1, 2]. Allergic diseases represent a major health problem in most developed countries and are associated with serious adverse health and socioeconomic outcomes [3, 4]. Working conditions in the construction industry have improved in many industrialized countries during past decades, but heavy physical work with recurrent exposure to chemical agents, dust, and climatic influences still represents considerable risk for construction workers and may affect their health [5]. Among workers with similar occupational exposures, diagnosis of allergy-related disorders in the construction industry offers unique opportunities for prevention. The aim of this review is to analyze available data of the literature on these diseases with emphasis on preventive aspects in order to produce statements and recommendations based on research evidence. 2. Respiratory Disorders Exposures in the workplace continue to contribute to asthma morbidity among adults and is a cause of
References
[1]
A. Watterson, “Global construction health and safety—what works, what does not, and why?” International Journal of Occupational and Environmental Health, vol. 13, no. 1, pp. 1–4, 2007.
[2]
L. Clarke, M. van der Meer, C. Bingham, E. Michielsens, and S. Miller, “Enabling and disabling: disability in the British and Dutch construction sectors,” Construction Management and Economics, vol. 27, no. 6, pp. 555–566, 2009.
[3]
R. Pawankar, G. W. Canonica, S. T. Holgate, and R. F. Lockey, “WAO-World Allergy Organization White Book on Allergy 2011-2012,” http://www.worldallergy.org/publications/wao_white_book.pdf.
[4]
T. Haahtela, S. Holgate, R. Pawankar, et al., “The biodiversity hypothesis and allergic disease: world allergy organization position statement,” World Allergy Organization Journal, vol. 6, no. 1, p. 3, 2013.
[5]
V. Arndt, D. Rothenbacher, U. Daniel, B. Zschenderlein, S. Schuberth, and H. Brenner, “Construction work and risk of occupational disability: a ten year follow up of 14 474 male workers,” Occupational and Environmental Medicine, vol. 62, no. 8, pp. 559–566, 2005.
[6]
O. Vandenplas, K. Toren, and P. D. Blanc, “Health and socioeconomic impact of work-related asthma,” European Respiratory Journal, vol. 22, no. 4, pp. 689–697, 2003.
[7]
J. Malo, “Future advances in work-related asthma and the impact on occupational health,” Occupational Medicine, vol. 55, no. 8, pp. 606–611, 2005.
[8]
P. Cullinan and J. Cannon, “Occupational asthma often goes unrecognised,” Practitioner, vol. 256, no. 1756, pp. 15–18, 2012.
[9]
S. M. Tarlo, J. Balmes, R. Balkissoon et al., “Diagnosis and management of work-related asthma: American College of Chest Physicians consensus statement,” Chest, vol. 134, supplement 14, pp. 1S–41S, 2008.
[10]
X. Baur, “Airborne allergens and irritants in the workplace,” in Allergy and Allergic Diseases, A. B. Kay, A. P. Kaplan, J. Bousquet, and P. G. Holt, Eds., pp. 1017–1022, Blackwell, Oxford, UK, 2008.
[11]
J. Balmes, M. Becklake, P. Blanc, et al., “American Thoracic Society statement: occupational contribution to the burden of airway disease,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 5, pp. 787–797, 2003.
[12]
S. R. Sama, D. K. Milton, P. R. Hunt, E. A. Houseman, P. K. Henneberger, and R. A. Rosiello, “Case-by-case assessment of adult-onset asthma attributable to occupational exposures among members of a health maintenance organization,” Journal of Occupational and Environmental Medicine, vol. 48, no. 4, pp. 400–407, 2006.
[13]
C. Lemiere, J. Ameille, P. Boschetto, et al., “Occupational asthma: new deleterious agents at the workplace,” Clinics in Chest Medicine, vol. 33, no. 3, pp. 519–530, 2012.
[14]
C. E. Mapp, P. Boschetto, P. Maestrelli, and L. M. Fabbri, “Occupational asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 3, pp. 280–305, 2005.
[15]
S. M. Brooks, M. A. Weiss, and I. L. Bernstein, “Reactive airways dysfunction syndrome (RADS). Persistent asthma syndrome after high level irritant exposures,” Chest, vol. 88, no. 3, pp. 376–384, 1985.
[16]
S. M. Tarlo and I. Broder, “Irritant-induced occupational asthma,” Chest, vol. 96, no. 2, pp. 297–300, 1989.
[17]
J.-L. Malo, H. Ghezzo, J. L'Archeveque, F. Lagier, B. Perrin, and A. Cartier, “Is the clinical history a satisfactory means of diagnosing occupational asthma?” American Review of Respiratory Disease, vol. 143, no. 3, pp. 528–532, 1991.
[18]
S. Dreborg and A. Frew, “Position Paper: allergen standardization and skin tests,” Allergy, vol. 48, supplement 14, pp. 49–54, 1993.
[19]
X. Baur, T. B. Aasen, P. Sherwood Burge, et al., “The management of work-related asthma guidelines: a broader perspective,” European Respiratory Review, vol. 21, no. 124, pp. 125–139, 2012.
[20]
G. Moscato, G. Pala, C. Barnig et al., “EAACI consensus statement for investigation of work-related asthma in non-specialized centres,” Allergy, vol. 67, no. 4, pp. 491–501, 2012.
[21]
T. B. Aasen, P. S. Burge, P. K. Henneberger, V. Schlünssen, and X. Baur, “Diagnostic approach in cases with suspected work-related asthma,” Journal of Occupational Medicine and Toxicology, vol. 8, p. 17, 2013.
[22]
D. Dick Heederik, K. Paul, P. K. Henneberger, and C. A. Redlich, “Primary prevention: exposure reduction, skin exposure and respiratory protection,” European Respiratory Review, vol. 21, no. 124, pp. 112–124, 2012.
[23]
G. Pauli, J.-C. Bessot, D. Vervloet, and J. Ameille, “The need for and limits of diagnostic tests for professional asthma,” Revue des Maladies Respiratoires, vol. 19, no. 3, pp. 289–291, 2002.
[24]
“American Thoracic Society Statement: occupational contribution to the burden of airway disease,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 5, pp. 787–797, 2003.
[25]
A. A. Arif, G. L. Delclos, L. W. Whitehead, S. R. Tortolero, and E. S. Lee, “Occupational exposures associated with work-related asthma and work-related wheezing among U.S. workers,” American Journal of Industrial Medicine, vol. 44, no. 4, pp. 368–376, 2003.
[26]
A. Karjalainen, R. Martikainen, P. Oksa, K. Saarinen, and J. Uitti, “Incidence of asthma among Finnish construction workers,” Journal of Occupational and Environmental Medicine, vol. 44, no. 8, pp. 752–757, 2002.
[27]
C. Lazor-Blanchet, S. Rusca, D. Vernez et al., “Acute pulmonary toxicity following occupational exposure to a floor stain protector in the building industry in Switzerland,” International Archives of Occupational and Environmental Health, vol. 77, no. 4, pp. 244–248, 2004.
[28]
R. Vermeulen, D. Heederik, H. Kromhout, and H. A. Smit, “Respiratory symptoms and occupation: a cross-sectional study of the general population,” Environmental Health, vol. 1, pp. 1–5, 2002.
[29]
E. Hnizdo, P. A. Sullivan, K. M. Bang, and G. Wagner, “Airflow obstruction attributable to work in industry and occupation among U.S. race/ethnic groups: a study of NHANES III data,” American Journal of Industrial Medicine, vol. 46, no. 2, pp. 126–135, 2004.
[30]
G. Mastrangelo, U. Fedeli, E. Fadda, G. Milan, and B. Saia, “Occupational chronic obstructive pulmonary disease: Italian law (decree no. 336/1994) and epidemiological evidence,” Medicina del Lavoro, vol. 95, no. 1, pp. 11–16, 2004.
[31]
S. J. Stocks, S. Turner, R. Mcnamee, M. Carder, L. Hussey, and R. M. Agius, “Occupation and work-related ill-health in UK construction workers,” Occupational Medicine, vol. 61, no. 6, pp. 407–415, 2011.
[32]
P. Maestrelli, V. Schlunssen, P. Mason, et al., “Contribution of host factors and workplace exposure to the outcome of occupational asthma,” European Respiratory Review, vol. 21, no. 124, pp. 88–96, 2012.
[33]
D. Wilken, X. Baur, L. Barbinova, et al., “What are the benefits of medical screening and surveillance?” European Respiratory Review, vol. 21, no. 124, pp. 105–111, 2012.
[34]
A. Karjalainen, R. Martikainen, T. Klaukka, K. Saarinen, and J. Uitti, “Risk of asthma among finnish patients with occupational rhinitis,” Chest, vol. 123, no. 1, pp. 283–288, 2003.
[35]
P. J. Nicholson, P. Cullinan, A. J. Newman Taylor, P. S. Burge, and C. Boyle, “Evidence based guidelines for the prevention, identification, and management of occupational asthma,” Occupational and Environmental Medicine, vol. 62, no. 5, pp. 290–299, 2005.
[36]
M. M. Riva, C. Bancone, F. Bigoni, M. Bresciani, M. Santini, and G. Mosconi, “Work-related diseases and the fitness to work in construction industry,” Giornale Italiano di Medicina del Lavoro ed Ergonomia, vol. 34, no. 3, pp. 306–312, 2012.
[37]
G. Mosconi, M. M. Riva, and M. Santini, “Construction: critical issues and occupational health,” Giornale Italiano di Medicina del Lavoro ed Ergonomia, vol. 34, no. 3, pp. 268–277, 2012.
[38]
S. M. Tarlo and G. M. Liss, “Occupational asthma: an approach to diagnosis and management,” Canadian Medical Association Journal, vol. 168, no. 7, pp. 867–871, 2003.
[39]
D. Gautrin, H. Ghezzo, C. Infante-Rivard et al., “Long-term outcomes in a prospective cohort of apprentices exposed to high-molecular-weight agents,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 8, pp. 871–879, 2008.
[40]
O. Vandenplas, H. Dressel, D. Nowak, and J. Jamart, “What is the optimal management option for occupational asthma?” European Respiratory Review, vol. 21, no. 124, pp. 97–104, 2012.
[41]
M. Carino, M. Aliani, C. Licitra, N. Sarno, and F. Ioli, “Death due to asthma at workplace in a diphenylmethane diisocyanate-sensitized subject,” Respiration, vol. 64, no. 1, pp. 111–113, 1997.
[42]
I. L. Bernstein, H. Keskinen, P. D. Blanc, et al., “Medicolegal aspects, compensation aspects, and evaluation of impairment/disability,” in Asthma in the Workplace, I. L. Bernstein, M. Chan-Yeung, J. L. Malo, et al., Eds., pp. 319–352, Taylor and Francis Group, New York, NY, USA, 3rd edition, 2006.
[43]
M. Carino, G. Di Leone, A. Nuzzaco, G. Trani, I. Zullo, and L. Ambrosi, “Occupational asthma and biological damage: adequate compensation?” Giornale Italiano di Medicina del Lavoro ed Ergonomia, vol. 25, no. 4, pp. 435–440, 2003.
[44]
F. Rui, M. Bovenzi, A. Prodi, and F. L. Filon, “Cutaneous allergy in construction workers,” Giornale Italiano di Medicina del Lavoro ed Ergonomia, vol. 34, supplement 3, pp. 153–155, 2012.
[45]
W. Uter, R. Rühl, A. Pfahlberg, J. Geier, A. Schnuch, and O. Gefeller, “Contact allergy in construction workers: results of a multifactorial analysis,” Annals of Occupational Hygiene, vol. 48, no. 1, pp. 21–27, 2004.
[46]
S. J. Stocks, R. McNamee, M. Carder, and R. M. Agius, “The incidence of medically reported work-related ill health in the UK construction industry,” Occupational and Environmental Medicine, vol. 67, no. 8, pp. 574–576, 2010.
[47]
T. Spee, C. Van Duivenbooden, and J. Terwoert, “Epoxy resins in the construction industry,” Annals of the New York Academy of Sciences, vol. 1076, pp. 429–438, 2006.
[48]
C. Winder and M. Carmody, “The dermal toxicity of cement,” Toxicology and Industrial Health, vol. 18, no. 7, pp. 321–331, 2002.
[49]
I. Kimber, N. I. Kerkvliet, S. L. Taylor, J. D. Astwood, K. Sarlo, and R. J. Dearman, “Toxicology of protein allergenicity: prediction and characterization,” Toxicological Sciences, vol. 48, no. 2, pp. 157–162, 1999.
[50]
R. J. Dearman, D. A. Basketter, and I. Kimber, “Local lymph node assay: use in hazard and risk assessment,” Journal of Applied Toxicology, vol. 19, no. 5, pp. 299–306, 1999.
[51]
G. Briatico-Vangosa, C. L. J. Braun, G. Cookman et al., “Respiratory allergy: hazard identification and risk assessment,” Fundamental and Applied Toxicology, vol. 23, no. 2, pp. 145–158, 1994.
[52]
J. Jarvis, M. J. Seed, R. A. Elton, L. Sawyer, and R. M. Agius, “Relationship between chemical structure and the occupational asthma hazard of low molecular weight organic compounds,” Occupational and Environmental Medicine, vol. 62, no. 4, pp. 243–250, 2005.
[53]
J. M. Rijnkels, T. Smid, E. C. Van Den Aker et al., “Prevention of work-related airway allergies; summary of the advice from the Health Council of the Netherlands,” Allergy, vol. 63, no. 12, pp. 1593–1596, 2008.