全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optimal Overcurrent Relay Coordination Using Optimized Objective Function

DOI: 10.1155/2014/869617

Full-Text   Cite this paper   Add to My Lib

Abstract:

A novel strategy for directional overcurrent relays (DOCRs) coordination is proposed. In the proposed method, the objective function is improved during the optimization process and objective function coefficients are changed in optimization problem. The proposed objective function is more flexible than the old objective functions because various coefficients of objective function are set by optimization algorithm. The optimization problem is solved using hybrid genetic algorithm and particle swarm optimization algorithm (HGAPSOA). This method is applied to 6-bus and 30-bus sample networks. 1. Introduction Protection of distribution networks is one of the most important issues in power systems. Overcurrent relay is one of the most commonly used protective relays in these systems. There are two types of settings for these kinds of relays: current and time settings. A proper relay setting plays a crucial role in reducing undesired effects of faults on the power systems [1, 2]. Overcurrent relays commonly have plug setting (PS) ranging from 50 to 200% in steps of 25%. The PS shows the current setting of the overcurrent relays. For a relay installed on a line, PS is defined by two parameters: the minimum fault current and the maximum load current. However, the most important variable in the optimal coordination of overcurrent relays is the time multiplier setting (TMS) [3]. So far, some researches have been carried out on coordination of overcurrent relays [3–7]. Due to the difficulty of nonlinear optimal programming techniques, the usual optimal coordination of overcurrent relays is generally carried out by linear programming techniques, including simplex, two-phase simplex, and dual simplex methods [3]. In these methods, the discrimination time of the main and backup relays ( ) are considered as constraints and then the optimal coordination problem is solved using both objective function and constraints. In [8], a fast method for optimization of the TMSs and current settings by evolutionary algorithm and linear programming has been proposed. In [4], an online technique to estimate the setting of DOCRs is introduced. This technique is based on estimation of parameters of a proper equivalent circuit of the grid. Relay coordination which is very constrained discrete optimization problem is hardly solved by traditional optimization techniques [5]. In [9], the pickup current and the TMS of the relays have been considered the optimization parameters for optimal coordination of directional overcurrent relays. These optimization techniques are started by an

References

[1]  R. Mohammadi, H. A. Abyaneh, F. Razavi, M. Al-Dabbagh, and S. H. H. Sadeghi, “Optimal relays coordination efficient method in interconnected power systems,” Journal of Electrical Engineering, vol. 61, no. 2, pp. 75–83, 2010.
[2]  K. Mazlumi and H. A. Abyaneh, “Relay coordination and protection failure effects on reliability indices in an interconnected sub-transmission system,” Electric Power Systems Research, vol. 79, no. 7, pp. 1011–1017, 2009.
[3]  D. Birla, R. P. Maheshwari, and H. O. Gupta, “Time overcurrent relay coordination: a review,” International Journal of Emerging Electric Power Systems, vol. 2, no. 2, 2005.
[4]  M. Ojaghi, Z. Sudi, and J. Faiz, “Implementation of full adaptive technique to optimal coordination of overcurrent relays,” IEEE Transactions on Power Delivery, vol. 28, no. 1, pp. 235–244, 2013.
[5]  C. W. So and K. K. Li, “Overcurrent relay coordination by evolutionary programming,” Electric Power Systems Research, vol. 53, no. 2, pp. 83–90, 2000.
[6]  C. W. So, K. K. Li, K. T. Lai, and K. Y. Fung, “Application of genetic algorithm for overcurrent relay coordination,” in Proceedings of the 6th International Conference on Developments in Power System Protection, pp. 66–69, 1997.
[7]  C. W. So and K. K. Li, “Time coordination method for power system protection by evolutionary algorithm,” IEEE Transactions on Industry Applications, vol. 36, no. 5, pp. 1235–1240, 2000.
[8]  J. A. Sueiro, E. Diaz-Dorado, E. Miguez, and J. Cidras, “Coordination of directional overcurrent relay using evolutionary algorithm and linear programming,” International Journal of Electrical Power & Energy Systems, vol. 42, no. 1, pp. 299–305, 2012.
[9]  M. Ezzeddine and R. Kaczmarek, “A novel method for optimal coordination of directional overcurrent relays considering their available discrete settings and several operation characteristics,” Electric Power Systems Research, vol. 81, no. 7, pp. 1475–1481, 2011.
[10]  P. P. Bedekar and S. R. Bhide, “Optimum coordination of overcurrent relay timing using continuous genetic algorithm,” Expert Systems with Applications, vol. 38, no. 9, pp. 11286–11292, 2011.
[11]  F. Razavi, H. A. Abyaneh, M. Al-Dabbagh, R. Mohammadi, and H. Torkaman, “A new comprehensive genetic algorithm method for optimal overcurrent relays coordination,” Electric Power Systems Research, vol. 78, no. 4, pp. 713–720, 2008.
[12]  D. E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning, Addison-Wesley, Reading, Mass, USA, 1989.
[13]  D. Adler, “Genetic algorithms and simulated annealing: a marrage proposal,” in Proceedings of the IEEE International Conference on Neural Networks, vol. 2, pp. 1104–1109, 1993.
[14]  K. Premalatha and A. M. Natarajan, “Hybrid PSO and GA for global maximization,” International Journal of Open Problems in Computer Science and Mathematics, vol. 2, no. 4, 2009.
[15]  H.-J. Lee, G. Son, and J.-W. Park, “Study on wind-turbine generator system sizing considering voltage regulation and overcurrent relay coordination,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1283–1293, 2011.
[16]  T. Amraee, “Coordination of directional overcurrent relays using seeker algorithm,” IEEE Transactions on Power Delivery, vol. 27, no. 3, pp. 1415–1422, 2012.
[17]  P. P. Bedekar and S. R. Bhide, “Optimum coordination of directional overcurrent relays using the hybrid GA-NLP approach,” IEEE Transactions on Power Delivery, vol. 26, no. 1, pp. 109–119, 2011.
[18]  R. M. Chabanloo, H. A. Abyaneh, S. S. H. Kamangar, and F. Razavi, “Optimal combined overcurrent and distance relays coordination incorporating intelligent overcurrent relays characteristic selection,” IEEE Transactions on Power Delivery, vol. 26, no. 3, pp. 1381–1391, 2011.
[19]  H. Sharifian, H. A. Abyaneh, S. K. Salman, R. Mohammadi, and F. Razavi, “Determination of the minimum break point set using expert system and genetic algorithm,” IEEE Transactions on Power Delivery, vol. 25, no. 3, pp. 1284–1295, 2010.
[20]  Power system test cases, 1999, http://www.ee.washington.edu/research/pstca/pf30/ieee30cdf.txt.
[21]  P. G. Slade, J.-L. Wu, E. J. Stacey et al., “The utility requirements for a distribution fault current limiter,” IEEE Transactions on Power Delivery, vol. 7, no. 2, pp. 507–515, 1992.
[22]  J. R. S. S. Kumara, A. Atputharajah, J. B. Ekanayake, and F. J. Mumford, “Over current protection coordination of distribution networks with fault current limiters,” in Proceedings of the IEEE Power Engineering Society General Meeting (PES '06), Montreal, Canada, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133