全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cure Kinetics and Activation Energy Studies of Modified Bismaleimide Resins

DOI: 10.5402/2012/309861

Full-Text   Cite this paper   Add to My Lib

Abstract:

The cure kinetics and activation energy (Ea) of bismaleimide homopolymer and modified bismaleimide resin systems with different chain extenders were investigated. The bismaleimide resin under investigation was bismaleimidodiphenyl methane (BMPM) and the chain extenders were (i) O-O′ diallyl bisphenol A (DABA) and (ii) methylenedianiline (MDA). Dynamic multiheating DSC method was used to study the kinetics of the curing process. Activation energies were determined for both unmodified and modified resins from nonisothermal multiheating rate DSC tests by using Ozawa and Kissinger models. Activation energy for BMPM homopolymer increased from 95?kJ/mol to 125?kJ/mol as a function of conversion. For the MDA-modified system the activation energy was independent of percentage conversion, at 108?kJ/mol. In the case of DABA-modified bismaleimide the activation energy increased steadily at 6?kJ/mol from 10 to 100% conversion. 1. Introduction High performance thermosets are of great interest as matrix resin for composites. Bismaleimide- (BMI-) and Polyimide- (PI-) based systems are among the more thermally stable thermosetting resins that are fast replacing the widely used epoxy resins. The unique properties of BMI resins, such as low moisture absorption, high crosslink density, good chemical resistance, and high glass transition temperature (Tg) make these resins suitable for prepregs, adhesives, electrical packaging, and other composite applications [1–3]. The properties they exhibit are directly related to the microstructure, with high cross-linking density, inherent aromatic structure and rigid molecular network. However, these microstructural characteristics results in inherent brittleness of the material. Extensive research is being done to enhance the toughness of BMIs by reducing the crosslink density, methods include the addition of reactive elastomers, copolymerization with allyl terminated copolymer, eutectic mixtures and modification with thermoplastics, or a combination of these methods [4]. According to the principles of molecular design, introducing a flexible linkage or chains into BMI can effectively improve the toughness of the resin [5], and the most preferred method for BMI resin modification is the copolymerization with allyl functional compounds and Michel addition chain reactions with aromatic diamines. The modified BMI resins can easily replace Epoderstand and predict the cure bxy resins, since the processing conditions are similar, but with superior performance characteristics. The properties of these BMI resin systems depend on the

References

[1]  H. Qin, P. T. Mather, J.-B. Baek, and L.-S. Tan, “Modification of BisphenolA based bismaleimide resin(BPA-BMI) with allyl terminated hyper branched polyimie(ATPAEKI),” Polymer, vol. 47, pp. 2813–2821, 2006.
[2]  Y. Li, J. Miranda, and H.-J. Sue, “Hygrothermal diffusion behaviour in bismaleimide resin,” Polymer, vol. 42, pp. 7791–7799, 2001.
[3]  H. Tang, N. Song, Z. Gao et al., “Synthesis and properties of 1,3,4-oxadiazole-containing high-performance bismaleimide resins,” Polymer, vol. 48, no. 1, pp. 129–138, 2007.
[4]  J. N. Hay and P. O'Gara, “Recent developments in thermoset curing methods,” Proceedings of the Institution of Mechanical Engineers G, vol. 220, no. 3, pp. 187–195, 2006.
[5]  M. E. Wright and D. A. Schorzman, “Thermally curing aryl-ethynyl end-capped imide oligomers: study of new aromatic end cap,” Macromole, vol. 33, pp. 8611–8617, 2000.
[6]  Y. Xiong, F. Y. C. Boey, and S. K. Rath, “Kinetic study of the curing behavior of bismaleimide modified with diallylbisphenol A,” Journal of Applied Polymer Science, vol. 90, no. 8, pp. 2229–2240, 2003.
[7]  D. Ro?u, C. N. Ca?caval, F. Musta, and C. Ciobanu, “Cure kinetics of epoxy resins studied by non-isothermal DSC data,” Thermochimica Acta, vol. 383, no. 1-2, pp. 119–127, 2002.
[8]  Z. Guo, S. Du, B. Zhang, and Z. Wu, “Cure kinetics of T700/BMI prepreg used for advanced thermoset composite,” Journal of Applied Polymer Science, vol. 97, no. 6, pp. 2238–2241, 2005.
[9]  Z. S. Guo, S. Y. Du, B. M. Zhang, and Z. J. Wu, “Modeling the curing kinetics for a modified bismaleimide resin using isothermal DSC,” Journal of Applied Polymer Science, vol. 92, no. 5, pp. 3338–3342, 2004.
[10]  R. Seifi and M. Hojjati, “Heat of reaction, cure kinetics, and viscosity of araldite LY-556 resin,” Journal of Composite Materials, vol. 39, no. 11, pp. 1027–1039, 2005.
[11]  J. Mijovic and S. Andjelic, “Study of the mechanism and rate of bismaleimide cure by remote in-situ real time fiber optic near-infrared spectroscopy,” Macromolecules, vol. 29, pp. 239–246, 1996.
[12]  M. Harsch, J. Karger-Kocsis, and M. Holst, “Influence of fillers and additives on the cure kinetics of an epoxy/anhydride resin,” European Polymer Journal, vol. 43, no. 4, pp. 1168–1178, 2007.
[13]  J. Schawe, “Kinetic studies of complex reactions—part 1: model free kinetics Usercom,” Mettler-Toledo, vol. 18, pp. 13–16, 2003.
[14]  J. Schawe, “Kinetic studies of complex reactions—part 2: description of description control, Usercom,” Mettler Toledo, vol. 18, pp. 8–12, 2004.
[15]  R. J. Morgan and R. J. Jurek, “Toughening procedures, processing and performance of bismaleimide-carbon fibre composites,” Polymer, vol. 34, no. 4, pp. 835–842, 1993.
[16]  Y. Li, Synthesis and cure characterization of high temperature polymers for aerospace applications, Ph.D. thesis, Dept.of Materials Science and Engineering, Texas A&M University, 2004.
[17]  J. L. Hopewell, G. A. George, and D. J. T. Hill, “Quantitative analysis of bismaleimide-diamine thermosets using near infrared spectroscopy,” Polymer, vol. 41, no. 23, pp. 8221–8229, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133