全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tuning the Mechanical Properties of Tapioca Starch by Plasticizers, Inorganic Fillers and Agrowaste-Based Fillers

DOI: 10.5402/2012/463298

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mechanical properties of tapioca starch-based films were tuned by different additives and additive combinations. The additives included plasticizers (glycerol, sorbitol, and citric acid), inorganic fillers (halloysite and kaolin), and agrowaste-based fillers (milled wood flour and rice bran). In addition, new biobased additives were prepared from wood flour and rice bran through liquefaction reaction. Through different additive combinations, starch-based materials with significant differences in tensile properties were designed. Addition of halloysite nanoclay resulted in materials with improved tensile strength at break and rather low strain at break. The effect of kaolin on tensile strength was highly dependent on the used plasticizer. However, in most combinations the addition of kaolin resulted in materials with intermediate tensile strength and strain at break values. The addition of milled wood flour and rice bran improved the tensile strength, while the addition of liquefied fillers especially liquefied rice bran increased the strain at break indicating that liquefied rice bran could have potential as a plasticizer for starch blends. 1. Introduction There is increasing interest in replacing nondegradable packaging materials with renewable and degradable polymeric materials. Starch-based materials are among the most promising renewable materials due to being abundant, renewable, low-cost, and nontoxic materials [1]. However, the inadequate mechanical properties and hydrophilicity limit the application range of starch-based material. The development of starch nanocomposites has attracted a lot of attention as a way to improve the mechanical properties and reduce the water absorption of starch materials [2]. In most studies 2?:?1 clays, especially montmorillonites with different surface modifications, were used as reinforcing phase due to their ability to be exfoliated [3, 4]. 1?:?1 aluminosilicate clay minerals, such as modified halloysite nanotubes, as well as kaolin have also been shown to enhance the mechanical properties of starch [5, 6]. The type of plasticizer and the organomodification of the nanoclays are important for the homogeneous distribution of the fillers and the clay exfoliation process [7, 8]. It was also shown that blending starch and nanoclay before addition of plasticizer improved the exfoliation process [9]. This allowed the starch to penetrate the silicate layers before the plasticizer did it. Mechanical properties of starch/montmorillonite composites could be additionally enhanced by using, for example, chitosan or polyvinyl

References

[1]  L. Avérous, “Biodegradable multiphase systems based on plasticized starch: a review,” Journal of Macromolecular Science C, vol. 44, no. 3, pp. 231–274, 2004.
[2]  L. Averous and N. Boquillon, “Biocomposites based on plasticized starch: thermal and mechanical behaviours,” Carbohydrate Polymers, vol. 56, no. 2, pp. 111–122, 2004.
[3]  N. Wang, X. Zhang, N. Han, and S. Bai, “Effect of citric acid and processing on the performance of thermoplastic starch/montmorillonite nano-composites,” Carbohydrate Polymers, vol. 76, no. 1, pp. 68–73, 2009.
[4]  K. Dean, L. Yu, and D. Y. Wu, “Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites,” Composites Science and Technology, vol. 67, no. 3-4, pp. 413–421, 2007.
[5]  Y. He, W. Kong, W. Wang et al., “Modified natural halloysite/potato starch composite films,” Carbohydrate Polymers, vol. 87, pp. 2706–2711, 2012.
[6]  J. A. Mbey, S. Hoppe, and F. Thomas, “Cassava starch-kaolinite composite film, effect of clay content and modification on film properties,” Carbohydrate Polymers, vol. 88, pp. 213–222, 2012.
[7]  C. Zeppa, F. Gouanvé, and E. Espuche, “Effect of a plasticizer on the structure of biodegradable starch/clay nanocomposites: thermal, water-sorption, and oxygen-barrier properties,” Journal of Applied Polymer Science, vol. 112, no. 4, pp. 2044–2056, 2009.
[8]  F. Chivrac, E. Pollet, P. Dole, and L. Avérous, “Starch-based nanobiocomposites: plasticizer impact on the montmorillonite exfoliation process,” Carbohydrate Polymers, vol. 79, no. 4, pp. 941–947, 2010.
[9]  J. K. Pandey and R. P. Singh, “Green nanocomposites from renewable resources: effect of plasticizer on the structure and material properties of clay-filled starch,” Starch/Staerke, vol. 57, no. 1, pp. 8–15, 2005.
[10]  P. Kampeerapappun, D. Aht-ong, D. Pentrakoon, and K. Srikulkit, “Preparation of cassava starch/montmorillonite composite film,” Carbohydrate Polymers, vol. 67, no. 2, pp. 155–163, 2007.
[11]  K. M. Dean, M. D. Do, E. Petinakis, and L. Yu, “Key interactions in biodegradable thermoplastic starch/poly(vinyl alcohol)/montmorillonite micro- and nanocomposites,” Composites Science and Technology, vol. 68, no. 6, pp. 1453–1462, 2008.
[12]  A. Ueberschaer, M. E. Cagiao, R. K. Bayer, S. Henning, and F. J. Baltá Calleja, “Micromechanical properties of injection-molded starch-wood particle composites,” Journal of Applied Polymer Science, vol. 100, no. 6, pp. 4893–4899, 2006.
[13]  M. Morreale, R. Scaffaro, A. Maio, and F. P. La Mantia, “Effect of adding wood flour to the physical properties of a biodegradable polymer,” Composites Part A, vol. 39, no. 3, pp. 503–513, 2008.
[14]  J. Duanmu, E. Kristofer Gamstedt, A. Pranovich, and A. Rosling, “Studies on mechanical properties of wood fiber reinforced cross-linked starch composites made from enzymatically degraded allylglycidyl ether-modified starch,” Composites Part A, vol. 41, no. 10, pp. 1409–1418, 2010.
[15]  R. Zhao, P. Torley, and P. J. Halley, “Emerging biodegradable materials: starch- and protein-based bio-nanocomposites,” Journal of Materials Science, vol. 43, no. 9, pp. 3058–3071, 2008.
[16]  A. E. S. Vercelheze, F. M. Fakhouri, L. H. Dall'Ant?nia et al., “Properties of baked foams based on cassava starch, sugarcane bagasse fibers and montmorillonite,” Carbohydrate Polymers, vol. 87, no. 2, pp. 1302–1310, 2012.
[17]  E. Azwar, E. Vuorinen, and M. Hakkarainen, “Pyrolysis-GC-MS reveals important differences in hydrolytic degradation process of wood flour and rice bran filled polylactide composites,” Polymer Degradation and Stability, vol. 97, no. 3, pp. 281–287, 2012.
[18]  N. L. Garcia, L. Ribba, A. Dufresne, M. I. Aranguren, and S. Goyanes, “Physico-Mechanical properties of biodegradable starch nanocomposites,” Macromolecular Materials and Engineering, vol. 294, no. 3, pp. 169–177, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133