全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electrical Behaviors of Flame Retardant Huntite and Hydromagnesite Reinforced Polymer Composites

DOI: 10.5402/2012/359034

Full-Text   Cite this paper   Add to My Lib

Abstract:

In our previous work, we studied the physical characteristics (particle size, surface treatment, etc.) of huntite/hydromagnesite mineral in order to be employed as a flame retardant filler. With this respect, electrical properties of the mineral reinforced polymeric composites were investigated in this study. After grinding of huntite/hydromagnesite mineral to the particle size of 10?μm, 1?μm, and 0.1?μm, phase and microstructural analyses were undertaken using X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). The ground minerals with different particle size and content levels were subsequently added to ethylene vinyl acetate copolymer (EVA) to produce composite materials. After fabrication of huntite/hydromagnesite reinforced plastic composite samples, they were characterized by using Fourier transform infrared (FTIR) and SEM-EDS. Electrical properties were measured as a main objective of this paper with Alpha-N high resolution dielectric analyzer as a function of particle size and loading level. Dielectric constant, dissipation factor, specific resistance, and conductivity of the composite materials were measured as a function of frequency. On the other hand, conductivity of Ag-coated and uncoated polymeric composite materials was measured. It was concluded that the electrical properties of plastic composites were improved with reducing the mineral particle size. 1. Introduction Despite significant advances in synthesis and characterization of polymers, a correct understanding of polymer molecular structure did not emerge until the 1920s. Before then, scientists believed that polymers were clusters of small molecules (called colloids), without definite molecular weights, held together by an unknown force. In 1922, Hermann Staudinger proposed that polymers consisted of long chains of atoms held together by covalent bonds, an idea which did not gain wide acceptance for over a decade and for which Staudinger was ultimately awarded the Nobel Prize [1]. A polymer can be described as macromolecule composed of repeating structural units typically connected by covalent chemical bonds [2]. A large and growing number of commercial polymers are composed of different types of unit attached together by chemical covalent bonds. They are known as copolymers and can comprise just two different units or three and so on. It is one of the common strategies used by molecular engineers to manipulate the properties of polymers to gain just the right combination of properties for a specific application [3]. Due to their low

References

[1]  N. G. McCrum, C. P. Buckley, and C. B. Bucknall, Principles of Polymer Engineering, Oxford University Press, Oxford, UK, 1997.
[2]  P. C. Painter and M. M. Coleman, Essentials of Polymer Science and Engineering, 2008.
[3]  “Introduction to polymers,” Copolymers, 2010, http://openlearn.open.ac.uk/mod/oucontent/view.php?id=397829§ion=2.3.6.
[4]  M. O’Driscoll, “Plastic compounding, Where mineral meets polymer,” Industrial Minerals, December 1994.
[5]  F. Laoutid, L. Bonnaud, M. Alexandre, J. M. Lopez-Cuesta, and P. Dubois, “New prospects in flame retardant polymer materials: from fundamentals to nanocomposites,” Materials Science and Engineering R, vol. 63, no. 3, pp. 100–125, 2009.
[6]  A. F. Grand and C. A. Wilkie, Fire Retardancy of Polymeric Materials, New York, NY, USA, 2000.
[7]  A. A. Basfar and H. J. Bae, “Influence of magnesium hydroxide and huntite hydromagnesite on mechanical properties of ethylene vinyl acetate compounds crosslinked by dicumyl peroxide and ionizing radiation,” Journal of Fire Sciences, vol. 28, no. 2, pp. 161–180, 2010.
[8]  L. Haurie, A. I. Fernández, J. I. Velasco, J. M. Chimenos, J. M. L. Cuesta, and F. Espiell, “Synthetic hydromagnesite as flame retardant. Evaluation of the flame behaviour in a polyethylene matrix,” Polymer Degradation and Stability, vol. 91, no. 5, pp. 989–994, 2006.
[9]  M. L. Bras, S. Bourbigot, S. Duquesne, C. Jama, and C. Wilkie, Fire Retardancy of Polymers New Applications of Mineral Fillers, 2005.
[10]  A. B. Morgan, J. M. Cogen, R. S. Opperman, and J. D. Harris, “The effectiveness of magnesium carbonate-based flame retardants for poly (ethylene-co-vinyl acetate) and poly (ethylene-co-ethyl acrylate),” Fire and Materials, vol. 31, no. 6, pp. 387–410, 2007.
[11]  R. Scidt, “In the line of fire, flame retardants overview,” Industrial Minerals, pp. 37–41, February 1999.
[12]  M. Weber, “Mineral flame retardants, overview & future trends,” in Proceedings of the European Minerals & Markets (Euromin ’99), pp. 8–10, Nice, France, June 1999.
[13]  R. J. Mureinik, “Flame retardants, minerals’ growth in plastics,” in Proceedings of the Industrial Minerals Information Ltd., IMIL Conference (Euromin ’97), pp. 8–10, Barcelona, Spain, June 1997.
[14]  M. Xanthos, Functional Fillers for Plastic, Wiley, New York, NY, USA, 2004.
[15]  A. I. Fernández, L. Haurie, J. Formosa, J. M. Chimenos, M. Antunes, and J. I. Velasco, “Characterization of poly(ethylene-co-vinyl acetate) (EVA) filled with low grade magnesium hydroxide,” Polymer Degradation and Stability, vol. 94, no. 1, pp. 57–60, 2009.
[16]  J. H. Schut, “Nanocomposites Do More with Less,” Plastics Technology-http://www.PTOOnline.com, 2009.
[17]  H. Y. Atay and E. ?elik, “Use of Turkish huntite/hydromagnesite mineral in plastic materials as a flame retardant,” Polymer Composites, vol. 31, no. 10, pp. 1692–1700, 2010.
[18]  R. N. Rothon, “General principles guiding selection and use of particulate materials,” in Particulate-Filled Polymer Composites, Rapra, Shropshire-UK, 2nd edition, 2003.
[19]  W. D. Callister, Materials Science and Engineering, John Wiley & Sons, New York, NY, USA, 6th edition, 2003.
[20]  A. R. Blythe, Electrical Properties of Polymers, Cambridge Solid State Science Series, 1979.
[21]  http://www.zeusinc.com/UserFiles/zeusinc/Documents/Zeus_Dielectric.pdf.
[22]  P. Horowitz and W. Hill, The Art of Electronics, Cambridge University Press, 1989.
[23]  A. Kennelly, “Impedance,” American Institute of Electrical Engineers (AIEE), 1893.
[24]  S. Musikant, What Every Engineer Should Know about Ceramics, CRC Press, 1991.
[25]  S. Ramo, J. R. Whinnery, and T. V. Duzer, Fields and Waves in Communication Electronics, John Wiley & Sons, New York, NY, USA, 3rd edition, 1994.
[26]  M. Z. Camur and H. Mutlu, “Major-ion geochemistry and mineralogy of the Salt Lake (Tuz G?lü) basin, Turkey,” Chemical Geology, vol. 127, no. 4, pp. 313–329, 1996.
[27]  W. M. Last, “Petrology of modern carbonate hardgrounds from East Basin lake, a saline maar lake, Southern Australia,” Sedimentary Geology, vol. 81, no. 3-4, pp. 215–229, 1992.
[28]  L. Haurie, A. I. Fernandez, J. I. Velasco, J. M. Chimenos, J. M. Lopez-Cuesta, and F. Espiell, “Effects of milling on the thermal stability of synthetic hydromagnesite,” Materials Research Bulletin, vol. 42, no. 6, pp. 1010–1018, 2007.
[29]  N. J. S. Sohi, M. Rahaman, and D. Khastgir, “Dielectric property and electromagnetic interference shielding effectiveness of ethylene vinyl acetate-based conductive composites: effect of different type of carbon fillers,” Polymer Composites, vol. 32, no. 7, pp. 1148–1154, 2011.
[30]  N. K. Shrivastava and B. B. Khatua, “Development of electrical conductivity with minimum possible percolation threshold in multi-wall carbon nanotube/polystyrene composites,” Carbon, vol. 49, no. 13, pp. 4571–4579, 2011.
[31]  B. K. Singh, P. Kar, Nilesh K. Shrivastava, and B. B. Khatua, “Electrical and mechanical properties of ABS/MWCNT nanocomposites prepared by melt-blending,” Journal of Applied Polymer Science, vol. 124, no. 4, pp. 3165–3174, 2012.
[32]  S. Thomas, P. Abdullateef, A. A. Al-Harthi, et al., “Electrical properties of natural rubber nanocomposites: effect of 1-octadecanol functionalization of carbon nanotubes,” Journal of Materials Science, vol. 47, no. 7, pp. 3344–3349, 2012.
[33]  G. Chen, J. Lu, and D. Wu, “The electrical properties of graphite nanosheet filled immiscible polymer blends,” Materials Chemistry and Physics, vol. 104, no. 2-3, pp. 240–243, 2007.
[34]  Z. Wen, T. Itoh, T. Uno, M. Kubo, and O. Yamamoto, “Thermal, electrical, and mechanical properties of composite polymer electrolytes based on cross-linked poly(ethylene oxide-co-propylene oxide) and ceramic filler,” Solid State Ionics, vol. 160, no. 1-2, pp. 141–148, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133