全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparative Cytochrome P450 In Vitro Inhibition by Atypical Antipsychotic Drugs

DOI: 10.1155/2013/792456

Full-Text   Cite this paper   Add to My Lib

Abstract:

The goal of this study was to assess in human liver microsomes the inhibitory capacity of commonly used antipsychotics on the most prominent CYP450 drug metabolizing enzymes (CYP1A2, CYP2C9, CYP2D6, and CYP3A). Chlorpromazine was the only antipsychotic that inhibited CYP1A2 activity ( ?μM), whilst levomepromazine, chlorpromazine, and thioridazine significantly decreased CYP2D6-mediated formation of -hydroxybufuralol (IC50 range, 3.5–25.5?μM). Olanzapine inhibited CYP3A-catalyzed production of , and -hydroxymidazolam ( and 42.20?μM, resp.). In contrast, risperidone ( ?μM) and levomepromazine ( ?μM) showed selectivity towards the inhibition of midazolam -hydroxylation reaction, and haloperidol did so towards -hydroxylation (IC50 of 2.76?μM). Thioridazine displayed a of 1.75?μM and an inhibitory potency of 1.57 on CYP2D6, suggesting a potential to induce in vivo interactions. However, with this exception, and given the observed values, the potential of the assayed antipsychotics to produce clinically significant inhibitions of CYP450 isoforms in vivo seems limited. 1. Introduction In contrast to conventional neuroleptics, atypical antipsychotics have been shown to be effective against both positive and negative symptoms of schizophrenia while showing a reduced propensity to induce extrapyramidal effects [1]. The cytochrome P450 (CYP) 1A2, CYP2C9, CYP2D6, and CYP3A enzymes are responsible for the metabolism of many of these and other psychoactive compounds [2–8]. Traditionally, studies on pharmacological interactions involving antipsychotics have examined the inhibition of these isoforms by drugs that are concomitantly administered, especially serotonin reuptake inhibitors [9–13]. However, there is still limited information on the capacity of antipsychotics to inhibit the metabolism of other coadministered drugs and the potentially clinically significant interactions that could arise [14]. In this paper we have assessed the potential for nine of the most commonly used atypical antipsychotics (clozapine, olanzapine, iloperidone, quetiapine, haloperidol, chlorpromazine, levomepromazine, thioridazine, and risperidone) and abaperidone (7-[3-[4-(6-fluoro-1,2-benzisoxazol-3-yl)-piperidin-1-yl]propoxy]-3-(hydroxymethyl)chromen-4-one; FI-8602), an underdevelopment compound with a potentially atypical antipsychotic profile [15, 16], to cause significant drug-drug interactions by using in vitro inhibition techniques in human liver microsomes. 2. Methods 2.1. Reference Substances Abaperidone and iloperidone were gifts from Centro de Investigación Farmacéutica, Grupo

References

[1]  J. A. Lowe, T. F. Seeger, and F. J. Vinick, “Atypical antipsychotics—recent findings and new perspectives,” Medicinal Research Reviews, vol. 8, no. 4, pp. 475–497, 1988.
[2]  L. P. Pan, P. Wijnant, C. De Vriendt, M. T. Rosseel, and F. M. Belpaire, “Characterization of the cytochrome P450 isoenzymes involved in the in vitroN-dealkylation of haloperidol,” British Journal of Clinical Pharmacology, vol. 44, no. 6, pp. 557–564, 1997.
[3]  J. A. Carrillo, A. G. Herráiz, S. I. Ramos, G. Gervasini, S. Vizcaíno, and J. Benítez, “Role of the smoking-induced cytochrome P450 (CYP)1A2 and polymorphic CYP2D6 in steady-state concentration of olanzapine,” Journal of Clinical Psychopharmacology, vol. 23, no. 2, pp. 119–127, 2003.
[4]  L. Bertilsson, J. A. Carrillo, M. L. Dahl et al., “Clozapine disposition covaries with CYP1A2 activity determined by a caffeine test,” British Journal of Clinical Pharmacology, vol. 38, no. 5, pp. 471–473, 1994.
[5]  J. A. Carrillo, A. G. Herraiz, S. I. Ramos, and J. Benítez, “Effects of caffeine withdrawal from the diet on the metabolism of clozapine in schizophrenic patients,” Journal of Clinical Psychopharmacology, vol. 18, no. 4, pp. 311–316, 1998.
[6]  J. Benítez, M. L. Dahl, E. Spina, and J. A. Carrillo, “Genetic an environmental factors causing variability in psychotropic drug response,” in Interindividual Variability in Human Drug Metabolism, G. M. Pacifici and O. Pelkonen, Eds., pp. 85–128, Taylor & Francis, London, UK, 2001.
[7]  E. L. Michalets, “Update: clinically significant cytochrome P-450 drug interactions,” Pharmacotherapy, vol. 18, no. 1, pp. 84–112, 1998.
[8]  J. O. Miners and D. J. Birkett, “Cytochrome P4502C9: an enzyme of major importance in human drug metabolism,” British Journal of Clinical Pharmacology, vol. 45, no. 6, pp. 525–538, 1998.
[9]  J. Wójcikowski and W. A. Daniel, “Influence of antidepressant drugs on chlorpromazine metabolism in human liver—an in vitro study,” Pharmacological Reports, vol. 62, no. 6, pp. 1062–1069, 2010.
[10]  J. Wójcikowski and W. A. Daniel, “Thioridazine-fluoxetine interaction at the level of the distribution process in vivo,” Pharmacological Reports, vol. 54, no. 6, pp. 647–654, 2002.
[11]  J. A. Carrillo, S. I. Ramos, A. G. Herraiz et al., “Pharmacokinetic interaction of fluvoxamine and thioridazine in schizophrenic patients,” Journal of Clinical Psychopharmacology, vol. 19, no. 6, pp. 494–499, 1999.
[12]  O. V. Olesen and K. Linnet, “Fluvoxamine-clozapine drug interaction: inhibition in vitro of five cytochrome P450 isoforms involved in clozapine metabolism,” Journal of Clinical Psychopharmacology, vol. 20, no. 1, pp. 35–42, 2000.
[13]  E. Spina, A. Avenoso, M. G. Scordo et al., “Inhibition of risperidone metabolism by fluoxetine in patients with schizophrenia: a clinically relevant pharmacokinetic drug interaction,” Journal of Clinical Psychopharmacology, vol. 22, no. 4, pp. 419–423, 2002.
[14]  T. Nakagami, N. Yasui-Furukori, M. Saito et al., “Thioridazine inhibits risperidone metabolism: a clinically relevant drug interaction,” Journal of Clinical Psychopharmacology, vol. 25, no. 1, pp. 89–91, 2005.
[15]  J. Bolós, S. Gubert, L. Anglada et al., “7-[3-(1-piperidinyl)propoxy]chromenones as potential atypical antipsychotics,” Journal of Medicinal Chemistry, vol. 39, no. 15, pp. 2962–2970, 1996.
[16]  J. Bolós, L. Anglada, S. Gubert et al., “7-[3-(1-piperidinyl)propoxy]chromenones as potential atypical antipsychotics. 2. Pharmacological profile of 7-[3-[4-(6-fluoro-1,2-benzisoxazol-3-yl)piperidin-1-yl]propoxy]-3-(hydroxymethyl)chromen-4-one (abaperidone, FI-8602),” Journal of Medicinal Chemistry, vol. 41, no. 27, pp. 5402–5409, 1998.
[17]  R. Z. Cer, U. Mudunuri, R. Stephens, and F. J. Lebeda, “IC50-to-Ki: a web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding,” Nucleic Acids Research, vol. 37, no. 2, pp. W441–W445, 2009.
[18]  H. Kirchherr and W. N. Kühn-Velten, “Quantitative determination of forty-eight antidepressants and antipsychotics in human serum by HPLC tandem mass spectrometry: a multi-level, single-sample approach,” Journal of Chromatography B, vol. 843, no. 1, pp. 100–113, 2006.
[19]  A. R. Boobis, “Prediction of inhibitory drug-drug interactions by studies in vitro,” in Advances in Drug Metabolism in Man, G. Pacifici and G. Fracchia, Eds., pp. 513–539, The European Commission, Luxembourgm, 1995.
[20]  J. A. Agúndez, L. Gallardo, C. Martínez, G. Gervasini, and J. Benítez, “Modulation of CYP1A2 enzyme activity by indoleamines: inhibition by serotonin and tryptamine,” Pharmacogenetics, vol. 8, no. 3, pp. 251–258, 1998.
[21]  G. Gervasini, C. Martínez, J. A. G. Agúndez, F. J. García-Gamito, and J. Benítez, “Inhibition of cytochrome P450 2C9 activity in vitro by 5-hydroxytryptamine and adrenaline,” Pharmacogenetics, vol. 11, no. 1, pp. 29–37, 2001.
[22]  G. Gervasini, C. Martinez, J. Benitez, and J. A. Agúndez, “Effect of neurotransmitters on NADPH-cytochrome P450 reductase in vitro activity,” Drug Metabolism Letters, vol. 1, no. 3, pp. 172–175, 2007.
[23]  C. Martínez, J. A. G. Agúndez, G. Gervasini, R. Martín, and J. Benítez, “Tryptamine: a possible endogenous substrate for CYP2D6,” Pharmacogenetics, vol. 7, no. 2, pp. 85–93, 1997.
[24]  C. Martínez, G. Gervasini, J. A. G. Agúndez et al., “Modulation of midazolam 1-hydroxylation activity in vitro by neurotransmitters and precursors,” European Journal of Clinical Pharmacology, vol. 56, no. 2, pp. 145–151, 2000.
[25]  J. Wójcikowski, J. Boksa, and W. A. Daniel, “Main contribution of the cytochrome P450 isoenzyme 1A2 (CYP1A2) to N-demethylation and 5-sulfoxidation of the phenothiazine neuroleptic chlorpromazine in human liver—a comparison with other phenothiazines,” Biochemical Pharmacology, vol. 80, no. 8, pp. 1252–1259, 2010.
[26]  J. G. Shin, N. Soukhova, and D. A. Flockhart, “Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms in vitro: preferential inhibition of CYP2D6,” Drug Metabolism and Disposition, vol. 27, no. 9, pp. 1078–1084, 1999.
[27]  C. B. Eap, G. Bondolfi, D. Zullino et al., “Pharmacokinetic drug interaction potential of risperidone with cytochrome P450 isozymes as assessed by the dextromethorphan, the caffeine, and the mephenytoin test,” Therapeutic Drug Monitoring, vol. 23, no. 3, pp. 228–231, 2001.
[28]  E. Spina, C. Martines, A. P. Caputi et al., “Debrisoquine oxidation phenotype during neuroleptic monotherapy,” European Journal of Clinical Pharmacology, vol. 41, no. 5, pp. 467–470, 1991.
[29]  R. B. Waade, H. Christensen, I. Rudberg, H. Refsum, and M. Hermann, “Influence of comedication on serum concentrations of aripiprazole and dehydroaripiprazole,” Therapeutic Drug Monitoring, vol. 31, no. 2, pp. 233–238, 2009.
[30]  E. C. Dinovo, R. O. Bost, I. Sunshine, and L. A. Gottschalk, “Distribution of thioridazine and its metabolites in human tissues and fluids obtained postmortem,” Clinical Chemistry, vol. 24, no. 10, pp. 1828–1830, 1978.
[31]  A. Forsman, M. Larsson, H. Lundborg, and P. Renstrom, “On the distribution and elimination of haloperidol in cholecystectomized patients,” European Journal of Drug Metabolism and Pharmacokinetics, vol. 6, no. 4, pp. 249–253, 1981.
[32]  J. I. Javaid, “Clinical pharmacokinetics of antipsychotics,” Journal of Clinical Pharmacology, vol. 34, no. 4, pp. 286–295, 1994.
[33]  C. L. DeVane and J. S. Markowitz, “Antipsychotics,” in Metabolic Drug Interactions, R. Levy, K. Thummel, W. Trager, P. Hansten, and M. Eichelbaum, Eds., pp. 245–257, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2000.
[34]  K. Thummel, K. Kunze, and D. Shen, “Metabolically-based drug-drug interactions: principles and mechanisms,” in Metabolic Drug Interactions, R. Levy, K. Thummel, W. Trager, P. Hansten, and M. Eichelbaum, Eds., pp. 3–19, Lippincott Williams & Wilkins,, Philadelphia, Pa, USA, 2000.
[35]  U. Schmitt, K. Krischbaum, B. Poller et al., “In vitro P-glycoprotein efflux inhibition by atypical antipsychotics is in vivo nicely reflected by pharmacodynamic but less by pharmacokinetic changes,” Pharmacology Biochemistry and Behavior, vol. 102, no. 2, pp. 312–320, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133