The present study assessed the therapeutic efficacy of glucosamine hydrochloride against collagen-induced arthritis in female Dark Agouti rats (DA). Arthritis was induced by intradermaly injecting a collagen and complete Freund’s adjuvant suspension at multiple sites in the rat at a dose of 4?mg/kg of body weight and thereafter followed by two more boosters of the same dose, after the 1st week and 2nd week of primary immunization. After 21 days from the day of primary immunization, the arthritic group rats were given oral supplementation of glucosamine hydrochloride at a dose of 300?mg/kg of body weight until day 45. The arthritic group treated with glucosamine hydrochloride from day 21 to day 45 showed significant reduction in arthritic histopathological changes of the joints, reduction in paw thickness and also a significant decrease in C-reactive protein and TNF-alpha in the serum. Treatment with 300?mg/kg of glucosamine hydrochloride was able to reverse the arthritic changes, hence suggesting that glucosamine has a therapeutic effect against collagen-induced arthritis. 1. Introduction Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease. It is a destructive polyarthropathy that leads to disability and immobility [1]. The main characteristic feature of RA is swelling of the joints, and it is also sometimes manifested in other organ systems in severe disease states. Some of the common physical symptoms of RA are swelling of joint areas, painful and stiff joints, fatigue, malaise, weight, loss and sometimes even depression [2]. The exact aetiopathogenesis of RA is not known. Risk factors such as genetic predisposition and environmental factors like cigarette smoking [3], microbial infections [4], and blood transfusions [5] will lead to the activation of CD 4+ T helper cells, which will lead to the stimulation of various cells in the joints that produce cytokines and inflammatory mediators that play an important role in the development of RA. Inflammatory mediators like matrix metalloproteinases (MMP) and cell adhesion molecules (CAMs), together with cytokines like tumor necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1), lead to joint destruction in RA patients [2, 6]. At present, there are few treatment options available for RA. Nonsteroidal anti-inflammatory drugs (NSAIDs), cyclooxygenase-2-selective NSAIDs [7], glucocorticoids, biological response modifying agents, and disease modifying antirheumatic drugs (DMARDs) are prescribed by physicians currently as single therapy or combined multiple drug therapy [8]. It has beenshown
References
[1]
L. Klareskog, A. I. Catrina, and S. Paget, “Rheumatoid arthritis,” The Lancet, vol. 373, no. 9664, pp. 659–672, 2009.
[2]
D. M. Lee and M. E. Weinblatt, “Rheumatoid arthritis,” The Lancet, vol. 358, no. 9285, pp. 903–911, 2001.
[3]
S. Y. Bang, K. H. Lee, S. K. Cho, H. S. Lee, K. W. Lee, and S. C. Bae, “Smoking increases rheumatoid arthritis susceptibility in individuals carrying the HLA-DRB1 shared epitope, regardless of rheumatoid factor or anti-cyclic citrullinated peptide antibody status,” Arthritis and Rheumatism, vol. 62, no. 2, pp. 369–377, 2010.
[4]
Y. Alamanos and A. A. Drosos, “Epidemiology of adult rheumatoid arthritis,” Autoimmunity Reviews, vol. 4, no. 3, pp. 130–136, 2005.
[5]
D. P. M. Symmons, C. R. Bankhead, B. J. Harrison et al., “Blood transfusion, smoking, and obesity as risk factors for the development of rheumatoid arthritis: results from a primary care-based incident case-control study in Norfolk, England,” Arthritis and Rheumatism, vol. 40, no. 11, pp. 1955–1961, 1997.
[6]
S. L. Robbins, V. Kumar, A. K. Abbas, R. S. Cotran, and N. Fausto, in Robbins and Cotran Pathologic Basis of Disease, V. Kumar, A. K. Abbas, and N. Fausto, Eds., p. 205, Elsevier, 2010.
[7]
M. C. Hochberg, “New directions in symptomatic therapy for patients with osteoarthritis and rheumatoid arthritis,” Seminars in Arthritis and Rheumatism, vol. 32, no. 3, supplement, pp. 4–14, 2002.
[8]
T. Sokka and H. Makinen, “Drug management of early rheumatoid arthritis—2008,” Best Practice and Research, vol. 23, no. 1, pp. 93–102, 2009.
[9]
J. W. Anderson, R. J. Nicolosi, and J. F. Borzelleca, “Glucosamine effects in humans: a review of effects on glucose metabolism, side effects, safety considerations and efficacy,” Food and Chemical Toxicology, vol. 43, no. 2, pp. 187–201, 2005.
[10]
G. S. Kelly, “The role of glucosamine sulfate and chondroitin sulfates in the treatment of degenerative joint disease,” Alternative Medicine Review, vol. 3, no. 1, pp. 27–39, 1998.
[11]
F. Richy, O. Bruyere, O. Ethgen, M. Cucherat, Y. Henrotin, and J. Y. Reginster, “Structural and symptomatic efficacy of glucosamine and chondroitin in knee osteoarthritis: a comprehensive meta-analysis,” Archives of Internal Medicine, vol. 163, no. 13, pp. 1514–1522, 2003.
[12]
M. Linlin, W. A. Rudert, J. Harnaha et al., “Immunosuppressive effects of glucosamine,” The Journal of Biological Chemistry, vol. 277, no. 42, pp. 39343–39349, 2002.
[13]
J. Hua, S. Suguro, S. Hirano, K. Sakamoto, and I. Nagaoka, “Preventive actions of a high dose of glucosamine on adjuvant arthritis in rats,” Inflammation Research, vol. 54, no. 3, pp. 127–132, 2005.
[14]
D. L. Asquith, A. M. Miller, I. B. McInnes, and F. Y. Liew, “Animal models of rheumatoid arthritis,” European Journal of Immunology, vol. 39, no. 8, pp. 2040–2044, 2009.
[15]
D. E. Trentham, A. S. Townes, and A. H. Kang, “Autoimmunity to type II collagen: an experimental model of arthritis,” Journal of Experimental Medicine, vol. 146, no. 3, pp. 857–868, 1977.
[16]
A. M. Bendele, “Animal models of osteoarthritis,” Journal of Musculoskeletal and Neuronal Interactions, vol. 1, no. 4, pp. 363–376, 2001.
[17]
K. H. Lee, Y. S. Chen, J. P. Judson, S. Chakravarthi, Y. M. Sim, and H. M. Er, “The effect of water extracts of Euphorbia hirta on cartilage degeneration in arthritic rats,” The Malaysian Journal of Pathology, vol. 30, no. 2, pp. 95–102, 2008.
[18]
D. E. Trentham, “Collagen arthritis as a relevant model for rheumatoid arthritis. Evidence pro and con,” Arthritis and Rheumatism, vol. 25, no. 8, pp. 911–916, 1982.
[19]
M. Cutolo, B. Villaggio, C. Craviotto, C. Pizzorni, B. Seriolo, and A. Sulli, “Sex hormones and rheumatoid arthritis,” Autoimmunity Reviews, vol. 1, no. 5, pp. 284–289, 2002.
[20]
D. B. Magilavy, “Animal models of chronic inflammatory arthritis,” Clinical Orthopaedics and Related Research, no. 259, pp. 38–45, 1990.
[21]
J. Beren, S. L. Hill, M. Diener-West, and N. R. Rose, “Effect of pre-loading oral glucosamine HCI/chondroitin sulfate/manganese ascorbate combination on expierimental arthritis in rats,” Proceedings of the Society for Experimental Biology and Medicine, vol. 226, no. 2, pp. 144–151, 2001.
[22]
A. Aghazadeh-Habashi, S. Sattari, F. Pasutto, and F. Jamali, “Single dose pharmacokinetics and bioavailability of glucosamine in the rat,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 5, no. 2, pp. 181–184, 2002.
[23]
A. I. Russell and M. F. McCarty, “Glucosamine in osteoarthritis,” The Lancet, vol. 354, no. 9190, pp. 1641–1642, 1999.
[24]
J. Hua, S. Suguro, K. Iwabuchi, Y. Tsutsumi-Ishii, K. Sakamoto, and I. Nagaoka, “Glucosamine, a naturally occurring amino monosaccharide, suppresses the ADP-mediated platelet activation in humans,” Inflammation Research, vol. 53, no. 12, pp. 680–688, 2004.
[25]
R. Thakral, U. K. Debnath, and C. Dent, “Role of glucosamine in osteoarthritis,” Current Orthopaedics, vol. 21, no. 5, pp. 386–389, 2007.
[26]
G. M. Campo, A. Avenoso, S. Campo, A. M. Ferlazzo, D. Altavilla, and A. Calatroni, “Efficacy of treatment with glycosaminoglycans on experimental collagen-induced arthritis in rats,” Arthritis Research & Therapy, vol. 5, no. 3, pp. R122–R131, 2003.
[27]
M. Feldmann, F. M. Brennan, B. M. Foxwell, and R. N. Maini, “The role of TNF alpha and IL-1 in rheumatoid arthritis,” Current Directions in Autoimmunity, vol. 3, pp. 188–199, 2001.
[28]
B. Rhodes, B. G. Fürnrohr, and T. J. Vyse, “C-reactive protein in rheumatology: biology and genetics,” Nature Reviews Rheumatology, vol. 7, no. 5, pp. 282–289, 2011.
[29]
P. S. Chan, J. P. Caron, and M. W. Orth, “Short-term gene expression changes in cartilage explants stimulated with interleukin beta plus glucosamine and chondroitin sulfate,” Journal of Rheumatology, vol. 33, no. 7, pp. 1329–1340, 2006.