全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Scientific Challenges and Implementation Barriers to Translation of Pharmacogenomics in Clinical Practice

DOI: 10.1155/2013/641089

Full-Text   Cite this paper   Add to My Lib

Abstract:

The mapping of the human genome and subsequent advancements in genetic technology had provided clinicians and scientists an understanding of the genetic basis of altered drug pharmacokinetics and pharmacodynamics, as well as some examples of applying genomic data in clinical practice. This has raised the public expectation that predicting patients’ responses to drug therapy is now possible in every therapeutic area, and personalized drug therapy would come sooner than later. However, debate continues among most stakeholders involved in drug development and clinical decision-making on whether pharmacogenomic biomarkers should be used in patient assessment, as well as when and in whom to use the biomarker-based diagnostic tests. Currently, most would agree that achieving the goal of personalized therapy remains years, if not decades, away. Realistic application of genomic findings and technologies in clinical practice and drug development require addressing multiple logistics and challenges that go beyond discovery of gene variants and/or completion of prospective controlled clinical trials. The goal of personalized medicine can only be achieved when all stakeholders in the field work together, with willingness to accept occasional paradigm change in their current approach. 1. Introduction Variability in clinical response to standard therapeutic dosage regimen was reported in the 1950s by many pioneers in the field. Since then, the association between monogenic polymorphisms and variations of drugs’ metabolism, transport, or target had been identified and the vision of personalized drug therapy in health care envisioned [1, 2]. Pharmacogenomic-guided drug therapy for patient is based on the premise that a large portion of interindividual variability in drug response (efficacy and/or toxicity) is genetically determined. Despite the widespread recognition of the scientific rationale and the clinical implementation of pharmacogenomic tests at several major academic medical institutions [3–7], most clinicians and researchers engaged in the discipline would agree that the early vision of achieving personalized therapy in the form of therapeutic regimens tailored to an individual’s genetic profile remains some years away. Broadly speaking, the development and implementation pathways for pharmacogenomic tests consist of several stages (Figure 1): first, discovery of pharmacogenomic biomarkers and validation in well-controlled studies with independent populations; second, replication of drug-gene(s) association and demonstration of utility in at-risk patients;

References

[1]  W. E. Evans and M. V. Relling, “Pharmacogenomics: translating functional genomics into rational therapeutics,” Science, vol. 286, no. 5439, pp. 487–491, 1999.
[2]  E. S. Vesell, “New directions in pharmacogenetics: introduction,” Federation Proceedings, vol. 43, no. 8, pp. 2319–2325, 1984.
[3]  K. R. Crews, S. J. Cross, J. N. Mccormick et al., “Development and implementation of a pharmacist-managed clinical pharmacogenetics service,” American Journal of Health-System Pharmacy, vol. 68, no. 2, pp. 143–150, 2011.
[4]  D. R. Nelson, M. Conlon, C. Baralt, J. A. Johnson, M. J. Clare-Salzler, and M. Rawley-Payne, “University of florida clinical and translational science institute: transformation and translation in personalized medicine,” Clinical and Translational Science, vol. 4, no. 6, pp. 400–402, 2011.
[5]  J. M. Pulley, J. C. Denny, J. F. Peterson et al., “Operational implementation of prospective genotyping for personalized medicine: the design of the vanderbilt PREDICT project,” Clinical Pharmacology and Therapeutics, vol. 92, pp. 87–95, 2012.
[6]  P. H. O'Donnell, A. Bush, J. Spitz et al., “The 1200 patients project: creating a new medical model system for clinical implementation of pharmacogenomics,” Clinical Pharmacology and Therapeutics, vol. 92, pp. 446–449, 2012.
[7]  L. Cavallari and E. A. Nutescu, “A team approach to warfarin pharmacogenetics,” in Pharmacy Practice Nerws, 2012.
[8]  Y. W. F. Lam, “Translating pharmacogenomic research to therapeutic potentials,” in Pharmacogenomics: Challenges and Opportunities in Therapeutic Implementation, Y. W. F. Lam and L. H. Cavallari, Eds., Elsevier, 2013.
[9]  I. Zineh, G. D. Pebanco, C. L. Aquilante et al., “Discordance between availability of pharmacogenetics studies and pharmacogenetics-based prescribing information for the top 200 drugs,” The Annals of Pharmacotherapy, vol. 40, no. 4, pp. 639–644, 2006.
[10]  A. K. Malhotra, D. Goldman, R. W. Buchanan et al., “The dopamine D3 receptor (DRD3) Ser9Gly polymorphism and schizophrenia: a haplotype relative risk study and association with clozapine response,” Molecular Psychiatry, vol. 3, no. 1, pp. 72–75, 1998.
[11]  A. K. Malhotra, D. Goldman, C. Mazzanti, A. Clifton, A. Breier, and D. Pickar, “A functional serotonin transporter (5-HTT) polymorphism is associated with psychosis in neuroleptic-free schizophrenics,” Molecular Psychiatry, vol. 3, no. 4, pp. 328–332, 1998.
[12]  A. K. Malhotra, D. Goldman, N. Ozaki, A. Breier, R. Buchanan, and D. Pickar, “Lack of association between polymorphisms in the 5-HT(2A) receptor gene and the antipsychotic response to clozapine,” The American Journal of Psychiatry, vol. 153, no. 8, pp. 1092–1094, 1996.
[13]  M. Masellis, V. Basile, H. Y. Meltzer et al., “Serotonin subtype 2 receptor genes and clinical response to clozapine in schizophrenia patients,” Neuropsychopharmacology, vol. 19, no. 2, pp. 123–132, 1998.
[14]  M. J. Arranz, J. Munro, J. Birkett et al., “Pharmacogenetic prediction of clozapine response,” The Lancet, vol. 355, no. 9215, pp. 1615–1616, 2000.
[15]  S. T. Lee, S. Ryu, S. R. Kim et al., “Association study of 27 annotated genes for clozapine pharmacogenetics: validation of preexisting studies and identification of a new candidate gene, ABCB1, for treatment response,” Journal of Clinical Psychopharmacology, vol. 32, no. 4, pp. 441–448, 2012.
[16]  J. Schumacher, T. G. Schulze, T. F. Wienker, M. Rietschel, and M. M. Nothen, “Pharmacogenetics of clozapine response,” The Lancet, vol. 356, no. 9228, pp. 506–507, 2000.
[17]  A. R. Shuldiner, J. R. O'Connell, K. P. Bliden et al., “Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy,” Journal of the American Medical Association, vol. 302, no. 8, pp. 849–858, 2009.
[18]  E. Link, S. Parish, J. Armitage et al., “SLCO1B1 variants and statin-induced myopathy—a genomewide study,” The New England Journal of Medicine, vol. 359, no. 8, pp. 789–799, 2008.
[19]  G. M. Cooper, J. A. Johnson, T. Y. Langaee et al., “A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose,” Blood, vol. 112, no. 4, pp. 1022–1027, 2008.
[20]  P. C. Cha, T. Mushiroda, A. Takahashi et al., “Genome-wide association study identifies genetic determinants of warfarin responsiveness for Japanese,” Human Molecular Genetics, vol. 19, no. 23, pp. 4735–4744, 2010.
[21]  F. Takeuchi, R. McGinnis, S. Bourgeois et al., “A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose,” PLoS Genetics, vol. 5, no. 3, 2009.
[22]  A. K. Daly, P. T. Donaldson, P. Bhatnagar et al., “HLA-B?5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin,” Nature Genetics, vol. 41, no. 7, pp. 816–819, 2009.
[23]  K. ?berg, D. E. Adkins, J. Bukszár et al., “Genomewide association study of movement-related adverse antipsychotic effects,” Biological Psychiatry, vol. 67, no. 3, pp. 279–282, 2010.
[24]  D. E. Adkins, K. ?berg, J. L. McClay et al., “Genomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs,” Molecular Psychiatry, vol. 16, no. 3, pp. 321–332, 2011.
[25]  D. E. Adkins, K. Berg, J. L. McClay et al., “A genomewide association study of citalopram response in major depressive disorder-a psychometric approach,” Biological Psychiatry, vol. 68, no. 6, pp. e25–e27, 2010.
[26]  A. Alkelai, L. Greenbaum, A. Rigbi, K. Kanyas, and B. Lerer, “Genome-wide association study of antipsychotic-induced parkinsonism severity among schizophrenia patients,” Psychopharmacology, vol. 206, no. 3, pp. 491–499, 2009.
[27]  C. Lavedan, L. Licamele, S. Volpi et al., “Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study,” Molecular Psychiatry, vol. 14, no. 8, pp. 804–819, 2009.
[28]  J. L. McClay, D. E. Adkins, K. ?berg et al., “Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics,” Molecular Psychiatry, vol. 16, no. 1, pp. 76–85, 2011.
[29]  S. Volpi, C. Heaton, K. MacK et al., “Whole genome association study identifies polymorphisms associated with QT prolongation during iloperidone treatment of schizophrenia,” Molecular Psychiatry, vol. 14, no. 11, pp. 1024–1031, 2009.
[30]  S. Volpi, S. G. Potkin, A. K. Malhotra, L. Licamele, and C. Lavedan, “Applicability of a genetic signature for enhanced iloperidone efficacy in the treatment of schizophrenia,” Journal of Clinical Psychiatry, vol. 70, no. 6, pp. 801–809, 2009.
[31]  J. W. Belmont, P. Hardenbol, T. D. Willis et al., “The international HapMap project,” Nature, vol. 426, no. 6968, pp. 789–796, 2003.
[32]  M. I. Lucena, M. Molokhia, Y. Shen et al., “Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles,” Gastroenterology, vol. 141, no. 1, pp. 338–347, 2011.
[33]  K. A. Jablonski, J. B. McAteer, P. I. W. De Bakker et al., “Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program,” Diabetes, vol. 59, no. 10, pp. 2672–2681, 2010.
[34]  R. Lubomirov, J. D. Lulio, A. Fayet et al., “ADME pharmacogenetics: investigation of the pharmacokinetics of the antiretroviral agent lopinavir coformuiated with ritonavir,” Pharmacogenetics and Genomics, vol. 20, no. 4, pp. 217–230, 2010.
[35]  G. Suarez-Kurtz, D. D. Vargens, V. A. Sortica, and M. H. Hutz, “Accuracy of NAT2 SNP genotyping panels to infer acetylator phenotypes in African, Asian, Amerindian and admixed populations,” Pharmacogenomics, vol. 13, no. 8, pp. 851–854, 2012.
[36]  G. Suarez-Kurtz, S. D. Pena, and M. H. Hutz, “Application of the statistics to explore pharmacogenomic diversity in the Brazilian population,” Pharmacogenomics, vol. 13, no. 7, pp. 771–777, 2012.
[37]  B. F. Gage, C. Eby, J. A. Johnson et al., “Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin,” Clinical Pharmacology and Therapeutics, vol. 84, no. 3, pp. 326–331, 2008.
[38]  R. P. Owen, R. B. Altman, and T. E. Klein, “PharmGKB and the international warfarin pharmacogenetics consortium: the changing role for pharmacogenomic databases and single-drug pharmacogenetics,” Human Mutation, vol. 29, no. 4, pp. 456–460, 2008.
[39]  T. E. Klein, R. B. Altman, N. Eriksson et al., “Estimation of the warfarin dose with clinical and pharmacogenetic data,” The New England Journal of Medicine, vol. 360, pp. 753–764, 2009.
[40]  J. Shin and D. Cao, “Comparison of warfarin pharmacogenetic dosing algorithms in a racially diverse large cohort,” Pharmacogenomics, vol. 12, no. 1, pp. 125–134, 2011.
[41]  M. McCormack, A. Alfirevic, S. Bourgeois et al., “HLA-A?3101 and carbamazepine-induced hypersensitivity reactions in Europeans,” The New England Journal of Medicine, vol. 364, pp. 1134–1143, 2011.
[42]  P. Chen, J. J. Lin, C. S. Lu et al., “Carbamazepine-induced toxic effects and HLA-B?1502 screening in Taiwan,” The New England Journal of Medicine, vol. 364, no. 12, pp. 1126–1133, 2011.
[43]  V. L. Yip, A. G. Marson, A. L. Jorgensen, M. Pirmohamed, and A. Alfirevic, “HLA genotype and carbamazepine-induced cutaneous adverse drug reactions: a systematic review,” Clinical Pharmacology and Therapeutics, vol. 92, pp. 757–765, 2012.
[44]  C. L. Alfaro, Y. W. F. Lam, J. Simpson, and L. Ereshefsky, “CYP2D6 status of extensive metabolizers after multiple-dose fluoxetine, fluvoxamine, paroxetine, or sertraline,” Journal of Clinical Psychopharmacology, vol. 19, no. 2, pp. 155–163, 1999.
[45]  C. L. Alfaro, Y. W. F. Lam, J. Simpson, and L. Ereshefsky, “CYP2D6 inhibition by fluoxetine, paroxetine, sertraline, and venlafaxine in a crossover study: intraindividual variability and plasma concentration correlations,” Journal of Clinical Pharmacology, vol. 40, no. 1, pp. 58–66, 2000.
[46]  G. R. Robertson, C. Liddle, and S. J. Clarke, “Inflammation and altered drug clearance in cancer: transcriptional repression of a human CYP3A4 transgene in tumor-bearing mice,” Clinical Pharmacology and Therapeutics, vol. 83, no. 6, pp. 894–897, 2008.
[47]  K. A. Espnes, K. O. Heimdal, and O. Spigset, “A puzzling case of increased serum clozapine levels in a patient with inflammation and infection,” Therapeutic Drug Monitoring, vol. 34, no. 5, pp. 489–492, 2012.
[48]  F. Stegmeier, M. Warmuth, W. R. Sellers, and M. Dorsch, “Targeted cancer therapies in the twenty-first century: lessons from imatinib,” Clinical Pharmacology and Therapeutics, vol. 87, no. 5, pp. 543–552, 2010.
[49]  A. Gomez and M. Ingelman-Sundberg, “Pharmacoepigenetics: its role in interindividual differences in drug response,” Clinical Pharmacology and Therapeutics, vol. 85, no. 4, pp. 426–430, 2009.
[50]  W. Baer-Dubowska, A. Majchrzak-Celińska, and M. Cichocki, “Pharmocoepigenetics: a new approach to predicting individual drug responses and targeting new drugs,” Pharmacological Reports, vol. 63, no. 2, pp. 293–304, 2011.
[51]  V. Perera, A. S. Gross, and A. J. McLachlan, “Influence of environmental and genetic factors on CYP1A2 activity in individuals of South Asian and European ancestry,” Clinical Pharmacology and Therapeutics, vol. 92, no. 4, pp. 511–519, 2012.
[52]  M. Kacevska, M. Ivanov, and M. Ingelman-Sundberg, “Epigenomics and interindividual differences in drug response,” Clinical Pharmacology and Therapeutics, vol. 92, no. 6, pp. 727–736, 2012.
[53]  Centers for Disease Control and Prevention, Genetic testing: ACCE model system for collecting, analyzing and disseminating information on genetic tests ,2010.
[54]  A. O. Berg, M. Piper, K. Armstrong et al., “Recommendations from the EGAPP working group: testing for cytochrome P450 polymorphisms in adults with nonpsychotic depression treated with selective serotonin reuptake inhibitors,” Genetics in Medicine, vol. 9, no. 12, pp. 819–825, 2007.
[55]  L. Becquemont, A. Alfirevic, U. Amstutz et al., “Practical recommendations for pharmacogenomics-based prescription: 2010 ESF-UB conference on pharmacogenetics and pharmacogenomics,” Pharmacogenomics, vol. 12, no. 1, pp. 113–124, 2011.
[56]  K. R. Crews, A. Gaedigk, H. M. Dunnenberger et al., “Clinical Pharmacogenetics Implementation consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype,” Clinical Pharmacology and Therapeutics, vol. 91, pp. 321–326, 2012.
[57]  E. A. Fargher, K. Tricker, W. Newman et al., “Current use of pharmacogenetic testing: a national survey of thiopurine methyltransferase testing prior to azathioprine prescription,” Journal of Clinical Pharmacy and Therapeutics, vol. 32, no. 2, pp. 187–195, 2007.
[58]  J. A. Johnson, L. Gong, M. Whirl-Carrillo et al., “Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing,” Clinical Pharmacology and Therapeutics, vol. 90, pp. 625–629, 2011.
[59]  M. A. Martin, T. E. Klein, B. J. Dong, M. Pirmohamed, D. W. Haas, and D. L. Kroetz, “Clinical pharmacogenetics implementation consortium guidelines for hla-B genotype and abacavir dosing,” Clinical Pharmacology and Therapeutics, vol. 91, pp. 734–738, 2012.
[60]  M. V. Relling, E. E. Gardner, W. J. Sandborn et al., “Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing,” Clinical Pharmacology and Therapeutics, vol. 89, pp. 387–391, 2011.
[61]  S. A. Scott, K. Sangkuhl, E. E. Gardner et al., “Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy,” Clinical Pharmacology and Therapeutics, vol. 90, no. 2, pp. 328–332, 2011.
[62]  M. A. Thompson, J. A. Aberg, P. Cahn et al., “Antiretroviral treatment of adult HIV infection: 2010 recommendations of the International AIDS Society-USA panel,” Journal of the American Medical Association, vol. 304, no. 3, pp. 321–333, 2010.
[63]  R. A. Wilke, L. B. Ramsey, S. G. Johnson et al., “The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy,” Clinical Pharmacology and Therapeutics, vol. 92, pp. 112–117, 2012.
[64]  S. L. Chan, C. Suo, S. C. Lee, B. C. Goh, K. S. Chia, and Y. Y. Teo, “Translational aspects of genetic factors in the prediction of drug response variability: a case study of warfarin pharmacogenomics in a multi-ethnic cohort from Asia,” The Pharmacogenomics Journal, vol. 12, no. 4, pp. 312–318, 2012.
[65]  N. A. Limdi, M. Wadelius, L. Cavallari et al., “Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups,” Blood, vol. 115, no. 18, pp. 3827–3834, 2010.
[66]  R. B. Altman, “Pharmacogenomics: “Noninferiority” is sufficient for initial implementation,” Clinical Pharmacology and Therapeutics, vol. 89, no. 3, pp. 348–350, 2011.
[67]  C. M. Kelly and K. I. Pritchard, “CYP2D6 genotype as a marker for benefit of adjuvant tamoxifen in postmenopausal women: lessons learned,” Journal of the National Cancer Institute, vol. 104, no. 6, pp. 427–428, 2012.
[68]  M. J. Khoury, M. Gwinn, W. D. Dotson, and M. S. Bowen, “Is there a need for PGxceptionalism?” Genetics in Medicine, vol. 13, pp. 866–867, 2011.
[69]  Y. Nakamura, M. J. Ratain, N. J. Cox, H. L. McLeod, D. L. Kroetz, and D. A. Flockhart, “Re: CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast International Group 1-98 trial,” Journal of the National Cancer Institute, vol. 104, no. 16, pp. 1266–1268, 2012.
[70]  J. Woodcock, “Assessing the clinical utility of diagnostics used in drug therapy,” Clinical Pharmacology and Therapeutics, vol. 88, no. 6, pp. 765–773, 2010.
[71]  Y. W. F. Lam, “How much evidence is necessary for pharmacogenomic testing implementation?” Clinical and Experimental Pharmacology, vol. 2, p. e107, 2012.
[72]  J. C. Stingl and J. Brockm?ller, “Why, when, and how should pharmacogenetics be applied in clinical studies: current and future approaches to study designs,” Clinical Pharmacology and Therapeutics, vol. 89, no. 2, pp. 198–209, 2011.
[73]  C. S. Karapetis, S. Khambata-Ford, D. J. Jonker et al., “K-ras mutations and benefit from cetuximab in advanced colorectal cancer,” The New England Journal of Medicine, vol. 359, no. 17, pp. 1757–1765, 2008.
[74]  M. C. Deley, K. V. Ballman, J. Marandet, and D. Sargent, “Taking the long view: how to design a series of phase III trials to maximize cumulative therapeutic benefit,” Clinical Trials, vol. 9, pp. 283–292, 2012.
[75]  S. D. Patterson, N. Cohen, M. Karnoub et al., “Prospective-retrospective biomarker analysis for regulatory consideration: white paper from the industry pharmacogenomics working group,” Pharmacogenomics, vol. 12, no. 7, pp. 939–951, 2011.
[76]  J. P. Zhang, T. Lencz, and A. K. Malhotra, “D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis,” The American Journal of Psychiatry, vol. 167, no. 7, pp. 763–772, 2010.
[77]  E. P. Brass, “The gap between clinical trials and clinical practice: the use of pragmatic clinical trials to inform regulatory decision making,” Clinical Pharmacology and Therapeutics, vol. 87, no. 3, pp. 351–355, 2010.
[78]  S. R. Tunis, D. B. Stryer, and C. M. Clancy, “Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy,” Journal of the American Medical Association, vol. 290, no. 12, pp. 1624–1632, 2003.
[79]  J. L. Anderson, B. D. Horne, S. M. Stevens et al., “A randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing (CoumaGen-II),” Circulation, vol. 125, pp. 1997–2005, 2012.
[80]  J. Kirchheiner, S. Bauer, I. Meineke et al., “Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers,” Pharmacogenetics, vol. 12, no. 2, pp. 101–109, 2002.
[81]  J. L. Mega, T. Simon, J. P. Collet et al., “Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis,” Journal of the American Medical Association, vol. 304, no. 16, pp. 1821–1830, 2010.
[82]  A. M. Harmsze, J. W. van Werkum, J. M. Ten Berg et al., “CYP2C19?2 and CYP2C9?3 alleles are associated with stent thrombosis: a case-control study,” European Heart Journal, vol. 31, no. 24, pp. 3046–3053, 2010.
[83]  G. N. Levine, E. R. Bates, J. C. Blankenship et al., “ACCF/AHA/SCAI guideline for percutaneous coronary intervention: executive summary: a report of the American College of Cardiology Foundation/American heart association task force on practice guidelines and the society for cardiovascular angiography and interventions,” Circulation, vol. 124, pp. 2574–2609, 2011.
[84]  J. A. Johnson, D. M. Roden, L. J. Lesko, E. Ashley, T. E. Klein, and A. R. Shuldiner, “Clopidogrel: a case for indication-specific pharmacogenetics,” Clinical Pharmacology and Therapeutics, vol. 91, pp. 774–776, 2012.
[85]  D. R. Holmes, G. J. Dehmer, S. Kaul, D. Leifer, P. T. O'Gara, and C. M. Stein, “ACCF/AHA clinical alert: ACCF/AHA clopidogrel clinical alert: approaches to the FDA “boxed warning” a report of the American college of cardiology foundation task force on clinical expert consensus documents and the American heart association,” Circulation, vol. 122, no. 5, pp. 537–557, 2010.
[86]  R. Lubomirov, S. Colombo, J. Di Iulio et al., “Association of pharmacogenetic markers with premature discontinuation of first-line anti-HIV therapy: an observational cohort study,” Journal of Infectious Diseases, vol. 203, no. 2, pp. 246–257, 2011.
[87]  T. L. Kauf, R. A. Farkouh, S. R. Earnshaw, M. E. Watson, P. Maroudas, and M. G. Chambers, “Economic efficiency of genetic screening to inform the use of abacavir sulfate in the treatment of HIV,” PharmacoEconomics, vol. 28, no. 11, pp. 1025–1039, 2010.
[88]  W. C. Black, “The CE plane: a graphic representation of cost-effectiveness,” Medical Decision Making, vol. 10, no. 3, pp. 212–214, 1990.
[89]  R. A. Rosenheck, D. L. Leslie, and J. A. Doshi, “Second-generation antipsychotics: cost-effectiveness, policy options, and political decision making,” Psychiatric Services, vol. 59, no. 5, pp. 515–520, 2008.
[90]  L. Sikich, J. A. Frazier, J. McClellan et al., “Double-blind comparison of first- and second-generation antipsychotics in early-onset schizophrenia and schizoaffective disorder: findings from the treatment of early-onset schizophrenia spectrum disorders (TEOSS) study,” American Journal of Psychiatry, vol. 165, no. 11, pp. 1420–1431, 2008.
[91]  B. Lerer, R. H. Segman, H. Fangerau et al., “Pharmacogenetics of tardive dyskinesia: combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism,” Neuropsychopharmacology, vol. 27, no. 1, pp. 105–119, 2002.
[92]  P. R. Bakker, P. N. van Harten, and J. van Os, “Antipsychotic-induced tardive dyskinesia and the Ser9Gly polymorphism in the DRD3 gene: a meta analysis,” Schizophrenia Research, vol. 83, no. 2-3, pp. 185–192, 2006.
[93]  T. Furuta, N. Shirai, M. Kodaira et al., “Pharmacogenomics-based tailored versus standard therapeutic regimen for eradication of H. pylori,” Clinical Pharmacology and Therapeutics, vol. 81, no. 4, pp. 521–528, 2007.
[94]  R. H. Perlis, D. A. Ganz, J. Avorn et al., “Pharmacogenetic testing in the clinical management of schizophrenia: a decision-analytic model,” Journal of Clinical Psychopharmacology, vol. 25, no. 5, pp. 427–434, 2005.
[95]  G. F. Guzauskas, D. A. Hughes, S. M. Bradley, and D. L. Veenstra, “A risk-benefit assessment of prasugrel, clopidogrel, and genotype-guided therapy in patients undergoing percutaneous coronary intervention,” Clinical Pharmacology and Therapeutics, vol. 91, pp. 829–837, 2012.
[96]  E. S. Reese, C. Daniel Mullins, A. L. Beitelshees, and E. Onukwugha, “Cost-effectiveness of cytochrome P450 2C19 genotype screening for selection of antiplatelet therapy with clopidogrel or prasugrel,” Pharmacotherapy, vol. 32, no. 4, pp. 323–332, 2012.
[97]  M. H. Eckman, J. Rosand, S. M. Greenberg, and B. F. Gage, “Cost-effectiveness of using pharmacogenetic information in warfarin dosing for patients with nonvalvular atrial fibrillation,” Annals of Internal Medicine, vol. 150, no. 2, pp. 73–83, 2009.
[98]  J. H. S. You, K. K. N. Tsui, R. S. M. Wong, and G. Cheng, “Potential clinical and economic outcomes of CYP2C9 and VKORC1 genotype-guided dosing in patients starting warfarin therapy,” Clinical Pharmacology and Therapeutics, vol. 86, no. 5, pp. 540–547, 2009.
[99]  F. W. Frueh, S. Amur, P. Mummaneni et al., “Pharmacogenomic biomarker information in drug labels approved by the United States Food and Drug Administration: prevalence of related drug use,” Pharmacotherapy, vol. 28, no. 8, pp. 992–998, 2008.
[100]  M. A. Hamburg and F. S. Collins, “The path to personalized medicine,” The New England Journal of Medicine, vol. 363, no. 4, pp. 301–304, 2010.
[101]  G. Bartlett, N. Zgheib, A. Manamperi et al., “Pharmacogenomics in primary care: a crucial entry point for global personalized medicine?” Current Pharmacogenomics and Personalized Medicine, vol. 10, no. 2, pp. 101–105, 2012.
[102]  J. D. Roberts, G. A. Wells, M. R. Le May et al., “Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial,” The Lancet, vol. 379, no. 9827, pp. 1705–1711, 2012.
[103]  J. T. Delaney, A. H. Ramirez, E. Bowton et al., “Predicting clopidogrel response using DNA samples linked to an electronic health record,” Clinical Pharmacology and Therapeutics, vol. 91, pp. 257–263, 2012.
[104]  J. S. Schildcrout, J. C. Denny, E. Bowton et al., “Optimizing drug outcomes through pharmacogenetics: a case for preemptive genotyping,” Clinical Pharmacology and Therapeutics, vol. 92, pp. 235–242, 2012.
[105]  C. A. Fernandez, C. Smith, W. Yang et al., “Concordance of DMET plus genotyping results with those of orthogonal genotyping methods,” Clinical Pharmacology and Therapeutics, vol. 92, pp. 360–365, 2012.
[106]  J. Kirchheiner, K. Br?sen, M. L. Dahl et al., “CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages,” Acta Psychiatrica Scandinavica, vol. 104, no. 3, pp. 173–192, 2001.
[107]  B. S. Finkelman, B. F. Gage, J. A. Johnson, C. M. Brensinger, and S. E. Kimmel, “Genetic warfarin dosing: tables versus algorithms,” Journal of the American College of Cardiology, vol. 57, no. 5, pp. 612–618, 2011.
[108]  E. J. Stanek, C. L. Sanders, K. A. Taber et al., “Adoption of pharmacogenomic testing by US physicians: results of a nationwide survey,” Clinical Pharmacology and Therapeutics, vol. 91, pp. 450–458, 2012.
[109]  D. Gurwitz, J. E. Lunshof, G. Dedoussis et al., “Pharmacogenomics education: International Society of pharmacogenomics recommendations for medical, pharmaceutical, and health schools deans of education,” The Pharmacogenomics Journal, vol. 5, pp. 221–225, 2005.
[110]  Y. W. F. Lam, “Rethinking pharmacogenomics education beyond health professionals: addressing the “Know-Do” gap across the personalized medicine innovation ecosystem,” Current Pharmacogenomics and Personalized Medicine, vol. 10, no. 4, pp. 277–287, 2012.
[111]  K. B. Mccullough, C. M. Formea, K. D. Berg et al., “Assessment of the pharmacogenomics educational needs of pharmacists,” American Journal of Pharmaceutical Education, vol. 75, no. 3, p. 51, 2011.
[112]  J. J. Swen, M. Nijenhuis, A. De Boer et al., “Pharmacogenetics: from bench to byte an update of guidelines,” Clinical Pharmacology and Therapeutics, vol. 89, no. 5, pp. 662–673, 2011.
[113]  C. L. Overby, P. Tarczy-Hornoch, J. I. Hoath, I. J. Kalet, and D. L. Veenstra, “Feasibility of incorporating genomic knowledge into electronic medical records for pharmacogenomic clinical decision support,” BMC Bioinformatics, vol. 11, supplement 9, p. S10, 2010.
[114]  J. K. Hicks, K. R. Crews, J. M. Hoffman et al., “A clinician-driven automated system for integration of pharmacogenetic interpretations into an electronic medical record,” Clinical Pharmacology and Therapeutics, vol. 92, pp. 563–566, 2012.
[115]  C. A. McCarty, A. Nair, D. M. Austin, and P. F. Giampietro, “Informed consent and subject motivation to participate in a large, population-based genomics study: the marshfield clinic personalized medicine research project,” Community Genetics, vol. 10, no. 1, pp. 2–9, 2006.
[116]  H. Xu, S. P. Stenner, S. Doan, K. B. Johnson, L. R. Waitman, and J. C. Denny, “MedEx: a medication information extraction system for clinical narratives,” Journal of the American Medical Informatics Association, vol. 17, no. 1, pp. 19–24, 2010.
[117]  A. N. Kho, J. A. Pacheco, P. L. Peissig et al., “Electronic medical records for genetic research: results of the eMERGE consortium,” Science Translational Medicine, vol. 3, no. 79, Article ID 79re1, 2011.
[118]  A. H. Ramirez, Y. Shi, J. S. Schildcrout et al., “Predicting warfarin dosage in European-Americans and African-Americans using DNA samples linked to an electronic health record,” Pharmacogenomics, vol. 13, pp. 407–418, 2012.
[119]  A. K. Jha, C. M. Desroches, E. G. Campbell et al., “Use of electronic health records in U.S. hospitals,” The New England Journal of Medicine, vol. 360, no. 16, pp. 1628–1638, 2009.
[120]  J. Cohen, A. Wilson, and K. Manzolillo, “Clinical and economic challenges facing pharmacogenomics,” The Pharmacogenomics Journal, 2012.
[121]  J. R. Trosman, S. L. Van Bebber, and K. A. Phillips, “Health technology assessment and private payers's coverage of personalized medicine,” The American Journal of Managed Care, vol. 17, supplement 5, pp. SP53–SP60, 2011.
[122]  Food Drug Administration, “Guidance on pharmacogenetic tests and genetic tests for heritable markers”.
[123]  E. B. Elkin, M. C. Weinstein, E. P. Winer, K. M. Kuntz, S. J. Schnitt, and J. C. Weeks, “HER-2 testing and trastuzumab therapy for metastatic breast cancer: a cost-effectiveness analysis,” Journal of Clinical Oncology, vol. 22, no. 5, pp. 854–863, 2004.
[124]  M. E. Van den Akker-Van, D. Gurwitz, S. B. Detmar et al., “Cost-effectiveness of pharmacogenomics in clinical practice: a case study of thiopurine methyltransferase genotyping in acute lymphoblastic leukemia in Europe,” Pharmacogenomics, vol. 7, no. 5, pp. 783–792, 2006.
[125]  A. R. Hughes, W. R. Spreen, M. Mosteller et al., “Pharmacogenetics of hypersensitivity to abacavir: from PGx hypothesis to confirmation to clinical utility,” The Pharmacogenomics Journal, vol. 8, no. 6, pp. 365–374, 2008.
[126]  U. S. Food and Drug Administration, “FDA approves Xalkori with companion diagnostic for a type of late-stage lung cancer,” 2011.
[127]  E. D. Blair, “Assessing the value-adding impact of diagnostic-type tests on drug development and marketing,” Molecular Diagnosis and Therapy, vol. 12, no. 5, pp. 331–337, 2008.
[128]  R. S. Epstein, T. P. Moyer, R. E. Aubert et al., “Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness study),” Journal of the American College of Cardiology, vol. 55, no. 25, pp. 2804–2812, 2010.
[129]  J. L. Bevan, J. A. Lynch, T. N. Dubriwny et al., “Informed lay preferences for delivery of racially varied pharmacogenomics,” Genetics in Medicine, vol. 5, no. 5, pp. 393–399, 2003.
[130]  S. B. Haga, J. M. O'Daniel, G. M. Tindall, I. R. Lipkus, and R. Agans, “Survey of US public attitudes toward pharmacogenetic testing,” The Pharmacogenomics Journal, pp. 197–204, 2011.
[131]  G. Loukides, A. Gkoulalas-Divanis, and B. Malin, “Anonymization of electronic medical records for validating genome-wide association studies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 17, pp. 7898–7903, 2010.
[132]  J. Aberdeen, S. Bayer, R. Yeniterzi et al., “The MITRE identification scrubber toolkit: design, training, and assessment,” International Journal of Medical Informatics, vol. 79, no. 12, pp. 849–859, 2010.
[133]  L. G. Dressler and S. F. Terry, “How will GINA influence participation in pharmacogenomics research and clinical testing?” Clinical Pharmacology and Therapeutics, vol. 86, no. 5, pp. 472–475, 2009.
[134]  A. C. J. W. Janssens, M. Gwinn, L. A. Bradley, B. A. Oostra, C. M. van Duijn, and M. J. Khoury, “A critical appraisal of the scientific basis of commercial genomic profiles used to assess health risks and personalize health interventions,” American Journal of Human Genetics, vol. 82, no. 3, pp. 593–599, 2008.
[135]  D. H. Spencer, C. Lockwood, E. Topol et al., “Direct-to-consumer genetic testing: reliable or risky?” Clinical Chemistry, vol. 57, no. 12, pp. 1641–1644, 2011.
[136]  E. A. Ashley, A. J. Butte, M. T. Wheeler et al., “Clinical assessment incorporating a personal genome,” The Lancet, vol. 375, no. 9725, pp. 1525–1535, 2010.
[137]  N. Grecco, N. Cohen, A. W. Warner et al., “PhRMA survey of pharmacogenomic and pharmacodynamic evaluations: what next?” Clinical Pharmacology and Therapeutics, vol. 91, pp. 1035–1043, 2012.
[138]  Strattera, Eli Lilly and Company, IN, USA, 2011.
[139]  A. Inoue, T. Suzuki, T. Fukuhara et al., “Prospective phase II study of gefitinib for chemotherapy-na?ve patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations,” Journal of Clinical Oncology, vol. 24, no. 21, pp. 3340–3346, 2006.
[140]  L. V. Sequist, R. G. Martins, D. Spigel et al., “First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations,” Journal of Clinical Oncology, vol. 26, no. 15, pp. 2442–2449, 2008.
[141]  K. Tamura, I. Okamoto, T. Kashii et al., “Multicentre prospective phase II trial of gefitinib for advanced non-small cell lung cancer with epidermal growth factor receptor mutations: results of the west Japan thoracic oncology group trial (WJTOG0403),” British Journal of Cancer, vol. 98, no. 5, pp. 907–914, 2008.
[142]  C. H. Yang, C. J. Yu, J. Y. Shih et al., “Specific EGFR mutations predict treatment outcome of stage IIIB/IV patients with chemotherapy-naive non-small-cell lung cancer receiving first-line gefitinib monotherapy,” Journal of Clinical Oncology, vol. 26, no. 16, pp. 2745–2753, 2008.
[143]  K. Kobayashi, A. Inoue, K. Usui et al., “First-line gefitinib for patients with advanced non-small-cell lung cancer harboring epidermal growth factor receptor mutations without indication for chemotherapy,” Journal of Clinical Oncology, vol. 27, no. 9, pp. 1394–1400, 2009.
[144]  J. B. Singer, S. Lewitzky, E. Leroy et al., “A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury,” Nature Genetics, vol. 42, no. 8, pp. 711–714, 2010.
[145]  C. F. Spraggs, L. R. Parham, C. M. Hunt, and C. T. Dollery, “Lapatinib-induced liver injury characterized by class II HLA and Gilbert's syndrome genotypes,” Clinical Pharmacology and Therapeutics, vol. 91, pp. 647–652, 2012.
[146]  L. C. Surh, M. A. Pacanowski, S. B. Haga et al., “Learning from product labels and label changes: how to build pharmacogenomics into drug-development programs,” Pharmacogenomics, vol. 11, no. 12, pp. 1637–1647, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133