Antitussive effects of ethyl acetate fraction of Terminalia chebula on sulphur dioxide (SO2) gas induced cough have been examined in mice. Safety profile of Terminalia chebula was established by determining LD50 and acute neurotoxicity. The result showed that extract of Terminalia chebula dose dependently suppressed SO2 gas induced cough in mice. Terminalia chebula, after i.p. administration at dose level 500?mg/kg, offered maximum cough suppressive effects; that is, number of coughs at 60?min was (mean ± SEM) as compared to codeine 10?mg/kg; i.p., dextromethorphan 10?mg/kg; i.p., and saline, having frequency of cough , , and , respectively. LD50 value of Terminalia chebula was approximately 1265?mg/kg, respectively. No sign of neural impairment was observed at antitussive doses of extract. Antitussive effect of Terminalia chebula was partly reversed with treatment by naloxone (3?mg/kg; s.c.) while rimcazole (3?mg/kg; s.c.) did not antagonize its cough suppression activity. This may suggest that opioid receptors partially contribute in antitussive action of Terminalia chebula. Along with this, the possibility of presence of single or multiple mechanisms activated by several different pharmacological actions (mainly anti-inflammatory, antioxidant, spasmolytic, antibacterial, and antiphlegmatic) could not be eliminated. 1. Introduction Plants have formed the basis of sophisticated traditional medicine systems that have been in existence for thousands of years [1]. Ayurvedic, Unani, Kampo, and traditional Chinese medicine based systems continue to play an essential role in primary health care [2]. It has been estimated by World Health Organization (WHO) that approximately 80% of world’s inhabitants, mainly residing in developing countries, rely on traditional medicine, and 85% of traditional medicine involves the use of plant extracts or their active principles. The plant-derived products also play a significant role in health care system of the remaining 20% population, mainly residing in developed countries. In the USA, for example, 25% of all prescriptions dispensed from community pharmacies from 1959 to 1980 contained plant extracts or active principles prepared from higher plants [3]. Most popular cough medicines throughout the world are based on herbal derivatives. The number of plants that have been accepted as antitussives by different societies is immense. For example, the USA Physician Desk Reference (PDR) for Herbal Medicine categorizes over 100 herbs as antitussives [4]. Opium, Ammi, coltsfoot, plantain ma huang, thyme, and so forth are used
References
[1]
P. H. Abelson, “Medicine from plants,” Science, vol. 247, article 513, no. 4942, 1990.
[2]
H. G. Vogel, “Similarities between various systems of traditional medicine. Considerations for the future of ethnopharmacology,” Journal of Ethnopharmacology, vol. 35, no. 2, pp. 179–190, 1991.
[3]
N. R. Farnsworth, O. Akerele, and A. S. Bingel, “Medicinal plants in therapy,” Bulletin of the World Health Organization, vol. 63, no. 6, pp. 965–981, 1985.
[4]
J. Gruenwald, T. Brendler, and C. Jaenicke, Eds., PDR for Herbal Medicine, Medical Economics Company, Montvale, NJ, USA, 2nd edition, 2001.
[5]
M. Miyagoshi, S. Amagaya, and Y. Ogihara, “Antitussive effects of L-ephedrine, amygdalin, and Makyokansekito (Chinese traditional medicine) using a cough model induced by sulfur dioxide gas in mice,” Planta Medica, vol. 4, pp. 275–278, 1986.
[6]
R.-U. Haq, A.-U. A. Shah, A.-U. Khan et al., “Antitussive and toxicological evaluation of Vitex negundo,” Natural Product Research, vol. 26, no. 5, pp. 484–488, 2012.
[7]
R. U. Haq, U. Farooq, A. Wahab, M. Raza, V. U. Ahmad, and R. A. Khan, “Investigation of antitussive and toxicological activity of Ballota limbata in mice,” Pharmaceutical Biology, vol. 49, no. 6, pp. 627–632, 2011.
[8]
R. W. M?rz and H. Matthys, “Phytomedicines in the treatment of diseases of the lower respiratory tract. What is proven?” in Phytopharmaka III, D. Loew and N. Reitbrock, Eds., pp. 161–178, Steinkopff, Darmstadt, Germany, 1997.
[9]
S. R. Baquar, Medicinal and Poisonous Plants of Pakistan, Printas, Karachi, Pakistan, 1989.
[10]
K. R. Kirtikar and B. M. Basu, Indian Medicinal Plants, Apura Krishna Bose Indian Press, Allahabad, India, 1918.
[11]
H. M. Said, Hamdard Pharmacopoeia of Eastern Medicine, Hamdard National Foundation; Times Press; Sadar, Karachi, Pakistan, 1970.
[12]
P. C. Braga, “Experimental models for the study of cough,” in Cough, P. C. Braga and L. Allegra, Eds., pp. 55–70, Raven Press, New York, NY, USA, 1989.
[13]
A. J. May and J. G. Widdicombe, “Depression of the cough reflex by pentobarbitone and some opium derivatives,” British Journal of Pharmacology, vol. 9, pp. 335–340, 1954.
[14]
J. C. Weidemier, “A screening method for antitussive compounds,” Acta Physiologica et Pharmacologica Neerlandica, vol. 9, pp. 501–508, 1960.
[15]
M. G. Belvisi and D. J. Hele, “Animal models of cough,” in Cough: Causes, Mechanisms and Therapy, H. Boushey, K. F. Chung, and J. G. Widdicombe, Eds., pp. 217–222, Blackwell Science, Oxford, UK, 2003.
[16]
D. Lorke, “A new approach to practical acute toxicity testing,” Archives of Toxicology, vol. 54, no. 4, pp. 275–287, 1983.
[17]
L. L. Coughenour, J. R. McLean, and R. B. Parker, “A new device for the rapid measurement of impaired motor function in mice,” Pharmacology Biochemistry and Behavior, vol. 6, no. 3, pp. 351–353, 1977.
[18]
J. Kamei, Y. Iwamoto, M. Misawa, and Y. Kasuya, “Effects of rimcazole, a specific antagonist of σ sites, on the antitussive effects of non-narcotic antitussive drugs,” European Journal of Pharmacology, vol. 242, no. 2, pp. 209–211, 1993.
[19]
C. J. Kotzer, D. W. P. Hay, G. Dondio, G. Giardina, P. Petrillo, and D. C. Underwood, “The antitussive activity of δ-opioid receptor stimulation in guinea pigs,” Journal of Pharmacology and Experimental Therapeutics, vol. 292, no. 2, pp. 803–809, 2000.
[20]
K. F. Chung and A. B. Chang, “Therapy for cough: active agents,” Pulmonary Pharmacology and Therapeutics, vol. 15, no. 3, pp. 335–338, 2002.
[21]
H. P. Rang, M. M. Dale, and J. M. Ritter, Pharmacology, Churchill Livingstone, 4th edition, 1999.
[22]
J.-A. Karlsson, A.-S. Lanner, and C. G. A. Persson, “Airway opioid receptors mediate inhibition of cough and reflex bronchoconstriction in guinea pigs,” Journal of Pharmacology and Experimental Therapeutics, vol. 252, no. 2, pp. 863–868, 1990.
[23]
Z. R. Chen, R. J. Irvine, A. A. Somogyi, and F. Bochner, “Mu receptor binding of some commonly used opioids and their metabolites,” Life Sciences, vol. 48, no. 22, pp. 2165–2171, 1991.
[24]
V. E. Tyler, “Phytomedicines: back to the future,” Journal of Natural Products, vol. 62, no. 11, pp. 1589–1592, 1999.
[25]
P. V. Dicpinigaitis and J. B. Dobkin, “Antitussive effect of the GABA-agonist baclofen,” Chest, vol. 111, no. 4, pp. 996–999, 1997.
[26]
R. L. Mcleod, L. E. Parra, J. C. Mutter et al., “Nociceptin inhibits cough in the guinea-pig by activation of ORL1 receptors,” British Journal of Pharmacology, vol. 132, no. 6, pp. 1175–1178, 2001.
[27]
D. W. P. Hay, G. A. M. Giardina, D. E. Griswold et al., “Nonpeptide tachykinin receptor antagonists. III. SB 235375, a low central nervous system-penetrant, potent and selective neurokinin-3 receptor antagonist, inhibits citric acid-induced cough and airways hyper-reactivity in guinea pigs,” Journal of Pharmacology and Experimental Therapeutics, vol. 300, no. 1, pp. 314–323, 2002.
[28]
V. Schulz, R. H?nsel, and V. Tyler, Rational Phytotherapy, a Physicians’ Guide to Herbal Medicine, Springer, Berlin, Germany, 4th edition, 2001.
[29]
I. Ziment, “Herbal antitussives,” Pulmonary Pharmacology and Therapeutics, vol. 15, no. 3, pp. 327–333, 2002.
[30]
A. Amit, V. S. Saxena, N. Pratibha et al., “Mast cell stabilization, lipoxygenase inhibition, hyaluronidase inhibition, antihistaminic and antispasmodic activities of Aller-7, a novel botanical formulation for allergic rhinitis,” Drugs Under Experimental and Clinical Research, vol. 29, no. 3, pp. 107–115, 2003.
[31]
J. J. Adcock, “Peripheral opioid receptors and the cough reflex,” Respiratory Medicine, vol. 85, pp. 43–46, 1991.
[32]
C. A. Monteleone and A. R. Sherman, “Nutrition and asthma,” Archives of Internal Medicine, vol. 157, no. 1, pp. 23–34, 1997.
[33]
S. Eriksson, “Pulmonary emphysema and alpha1-antitrypsin deficiency,” Acta medica Scandinavica, vol. 175, pp. 197–205, 1964.
[34]
L. Grievink, H. A. Smit, M. C. Ocké, P. Van 'T Veer, and D. Kromhout, “Dietary intake of antioxidant (pro)-vitamins, respiratory symptoms and pulmonary function the MORGEN study,” Thorax, vol. 53, no. 3, pp. 166–171, 1998.
[35]
E. Omenaas, ?. Fluge, A. S. Buist, W. M. Vollmer, and A. Gulsvik, “Dietary vitamin C intake is inversely related to cough and wheeze in young smokers,” Respiratory Medicine, vol. 97, no. 2, pp. 134–142, 2003.
[36]
H.-Y. Cheng, T.-C. Lin, K.-H. Yu, C.-M. Yang, and C.-C. Lin, “Antioxidant and free radical scavenging activities of Terminalia chebula,” Biological and Pharmaceutical Bulletin, vol. 26, no. 9, pp. 1331–1335, 2003.
[37]
M. K. Gautam, S. Goel, R. R. Ghatule, A. Singh, G. Nath, and R. K. Goel, “Curative effect of Terminalia chebula extract on acetic acid-induced experimental colitis: role of antioxidants, free radicals and acute inflammatory marker,” Inflammopharmacology. In press.
[38]
G. H. Naik, K. I. Priyadarsini, D. B. Naik, R. Gangabhagirathi, and H. Mohan, “Studies on the aqueous extract of Terminalia chebula as a potent antioxidant and a probable radioprotector,” Phytomedicine, vol. 11, no. 6, pp. 530–538, 2004.
[39]
K. C. Huang, Pharmacology of Chinese Herbs, CRC Press, Boca Raton, Fla, USA, 2nd edition, 1999.
[40]
J. A. Duke, Handbook of Medicinal Herbs, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2002.