全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Design and Development of Novel Dual-Compartment Capsule for Improved Gastroretention

DOI: 10.1155/2013/752471

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of the proposed research work was to develop a novel dual-compartment capsule (NDCC) with polymeric disc for gastroretentive dosage form, which will ultimately result in better solubility and bioavailability of Ofloxacin. Floating ring caps were formulated by using different natural polymers, separating ring band and swellable polymer located at the bottom of capsule. Formulated ring caps were assessed for coating thickness, In vitro buoyancy, In vitro drug release, release kinetics and stability studies. Coating attained by the capsule shell was found to be 0.0643?mm. Depending on nature of natural polymer used, most of the formulations showed buoyancy for more than 9 hrs. Developed formulation demonstrated considerably higher drug release up to 9 hrs. The developed formulation depicted the drug release according to Korsmeyer-Peppas model. There was not any significant change in performance characteristics of developed ring caps after subjecting them to stability studies. The present study suggests that the use of NDCC for oral delivery of Ofloxacin could be an alternative to improve its systemic availability which could be regulated by the floating approach. The designed dosage system can have futuristic applications over payloads which require stomach-specific delivery. 1. Introduction Although tremendous advances have been made in drug delivery, considering costs and patient compliance, the oral route still remains the preferred route of administration for therapeutic agents. The environment of gastrointestinal tract significantly varies from stomach to large intestine (Table 1) [1]. This variation could serve a promising platform for the site-specific drug delivery of therapeutics. Table 1: Salient features of GI tract. The presence of a dosage form in the upper part of the gastrointestinal tract is important especially for drugs that are degraded or metabolized in the intestine or for drugs with local activity in the stomach [2, 3]. Likewise Singh and Kim [4] suggested that floating drug delivery is of particular interest for drugs which (a) have local action in the stomach, (b) are primarily absorbed in the stomach, (c) have poor solubility at an alkaline pH, (d) have a narrow window of absorption, and (e) are unstable in the intestinal or colonic environment. Gastrointestinal retention depends on many factors such as density and size of the dosage form, the fasting or fed condition of the patient, and the nature of the meal as well as posture [5–7]. Several gastroretentive formulation approaches such as high density [8], swelling [9],

References

[1]  S. Hwang, H. Park, and K. Park, “Gastric retentive drug-delivery systems,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 15, no. 3, pp. 243–284, 1998.
[2]  A. A. Deshpande, C. T. Rhodes, N. H. Shah, and A. W. Malick, “Controlled-release drug delivery systems for prolonged gastric residence: an overview,” Drug Development and Industrial Pharmacy, vol. 22, no. 6, pp. 531–539, 1996.
[3]  S. Arora, J. Ali, A. Ahuja, R. K. Khar, and S. Baboota, “Floating drug delivery systems: a review,” AAPS PharmSciTech, vol. 6, no. 3, article 47, pp. 372–390, 2005.
[4]  B. N. Singh and K. H. Kim, “Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention,” Journal of Controlled Release, vol. 63, no. 3, pp. 235–259, 2000.
[5]  R. Khosla and S. S. Davis, “The effect of tablet size on the gastric emptying of non-disintegrating tablets,” International Journal of Pharmaceutics, vol. 62, no. 2-3, pp. R9–R11, 1990.
[6]  S. Davis, A. F. Stockwell, and M. J. Taylor, “The effect of density on gastric emptying of single and multiple unit dosage forms,” Pharmaceutical Research, vol. 3, no. 4, pp. 208–213, 1986.
[7]  P. Mojaverian, P. H. Vlasses, P. E. Kellner, and M. L. Rocci, “Effects of gender, posture, and age on gastric residence time of an indigestible solid: pharmaceutical considerations,” Pharmaceutical Research, vol. 5, no. 10, pp. 639–644, 1988.
[8]  N. Rouge, E. Allémann, M. Gex-Fabry et al., “Comparative pharmacokinetic study of a floating multiple-unit capsule, a high-density multiple-unit capsule and an immediate-release tablet containing 25?mg atenolol,” Pharmaceutica Acta Helvetiae, vol. 73, no. 2, pp. 81–87, 1998.
[9]  R. N. Chen, H. O. Ho, C. Y. Yu, and M. T. Sheu, “Development of swelling/floating gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose for Losartan and its clinical relevance in healthy volunteers with CYP2C9 polymorphism,” European Journal of Pharmaceutical Sciences, vol. 39, no. 1–3, pp. 82–89, 2010.
[10]  Y. Liu, J. Zhang, Y. Gao, and J. Zhu, “Preparation and evaluation of glyceryl monooleate-coated hollow-bioadhesive microspheres for gastroretentive drug delivery,” International Journal of Pharmaceutics, vol. 413, no. 1-2, pp. 103–109, 2011.
[11]  R. Gr?ning, M. Berntgen, and M. Georgarakis, “Acyclovir serum concentrations following peroral administration of magnetic depot tablets and the influence of extracorporal magnets to control gastrointestinal transit,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 46, no. 3, pp. 285–291, 1998.
[12]  L. Whitehead, J. T. Fell, J. H. Collett, H. L. Sharma, and A. M. Smith, “Floating dosage forms: an in vivo study demonstrating prolonged gastric retention,” Journal of Controlled Release, vol. 55, no. 1, pp. 3–12, 1998.
[13]  M. D. Chavanpatil, P. Jain, S. Chaudhari, R. Shear, and P. R. Vavia, “Novel sustained release, swellable and bioadhesive gastroretentive drug delivery system for ofloxacin,” International Journal of Pharmaceutics, vol. 316, no. 1-2, pp. 86–92, 2006.
[14]  B. Castro, P. Gameiro, J. L. F. C. Lima, C. Matos, and S. Reis, “Interaction of drug with hexadecylphocholine micelles. Derivative spectroscopy, acid-base and solubility studies,” Materials Science and Engineering: C, vol. 18, no. 1-2, pp. 71–78, 2001.
[15]  A. Mehta, et al., “Evaluation of fluid-bed process for enteric coating systems,” Pharmaceutical Technology, vol. 10, no. 4, pp. 46–56, 1986.
[16]  S. Li, K. M. Feld, and C. R. Kowarski, “Preparation and evaluation of Eudragit acrylic resin for controlled drug release of pseudoephedrine hydrochloride,” Drug Development and Industrial Pharmacy, vol. 17, no. 12, pp. 1655–1683, 1991.
[17]  L. Yang, J. Eshraghi, and R. Fassihi, “A new intragastric delivery system for the treatment of Helicobacter pylori associated gastric ulcer: in vitro evaluation,” Journal of Controlled Release, vol. 57, no. 3, pp. 215–222, 1999.
[18]  B. R. Matthews, “Regulatory aspects of stability testing in Europe,” Drug Development and Industrial Pharmacy, vol. 25, no. 7, pp. 831–856, 1999.
[19]  H. E. Huber, L. B. Dale, and G. L. Christenson, “Utilization of hydrophilic gums for the control of drug release from tablet formulations. I. Disintegration and dissolution behavior,” Journal of Pharmaceutical Sciences, vol. 55, no. 9, pp. 974–976, 1966.
[20]  P. R. Sheth and J. Tossounian, “The hydrodynamically balanced system (HBS(TM)): a novel drug delivery system for oral use,” Drug Development and Industrial Pharmacy, vol. 10, no. 2, pp. 313–339, 1984.
[21]  T. Hadjiioannou, G. D. Christian, M. A. Koupparis, and P. E. Macheras, Quantitative Calculations in Pharmaceutical Practice and Research, VCH Publishers, New York, NY, USA, 1993.
[22]  F. Ocak and I. A?abeyo?lu, “Development of a membrane-controlled transdermal therapeutic system containing isosorbide dinitrate,” International Journal of Pharmaceutics, vol. 180, no. 2, pp. 177–183, 1999.
[23]  D. Bourne, Modern Pharmaceutics, Marcel Dekker Inc., New York, NY, USA, 2002.
[24]  T. Higuchi, “Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices,” Journal of Pharmaceutical Sciences, vol. 52, no. 12, pp. 1145–1149, 1963.
[25]  R. W. Korsmeyer, S. R. Lustig, and N. A. Peppas, “Solute and penetrant diffusion in swellable polymers. I. Mathematical modeling,” Journal of Polymer Science: Polymer Physics Edition, vol. 24, no. 2, pp. 395–408, 1986.
[26]  R. W. Korsmeyer, E. Von Meerwall, and N. A. Peppas, “Solute and penetrant diffusion in swellable polymers. II. Verification of theoretical models,” Journal of Polymer Science: Polymer Physics Edition, vol. 24, no. 2, pp. 409–434, 1986.
[27]  P. L. Ritger and N. A. Peppas, “A simple equation for desciption of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs,” Journal of Controlled Release, vol. 5, no. 1, pp. 23–36, 1987.
[28]  P. L. Ritger and N. A. Peppas, “A simple equation for description of solute release II. Fickian and anomalous release from swellable devices,” Journal of Controlled Release, vol. 5, no. 1, pp. 37–42, 1987.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133