全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

-DTPA-Meglumine-Anionic Linear Globular Dendrimer G1: Novel Nanosized Low Toxic Tumor Molecular MR Imaging Agent

DOI: 10.1155/2013/378452

Full-Text   Cite this paper   Add to My Lib

Abstract:

Despite the great efforts in the areas of early diagnosis and treatment of cancer, this disease continues to grow and is still a global killer. Cancer treatment efficiency is relatively high in the early stages of the disease. Therefore, early diagnosis is a key factor in cancer treatment. Among the various diagnostic methods, molecular imaging is one of the fastest and safest ones. Because of its unique characteristics, magnetic resonance imaging has a special position in most researches. To increase the contrast of MR images, many pharmaceuticals have been known and used so far. Gadopentetate (with commercial name Magnevist) is the first magnetic resonance imaging contrast media that has been approved by the US Food and Drug Administration. In this study, gadopentetate was first synthesized and then attached to a tree-like polymer called dendrimer which is formed by polyethylene glycol core and surrounding citric acid groups. Stability studies of the drug were carried out to ensure proper synthesis. Then, the uptake of the drug into liver hepatocellular cell line and the drug cytotoxicity were evaluated. Finally, in vitro and in vivo MR imaging were performed with the new synthetic drug. Based on the findings of this research, connecting gadopentetate to dendrimer surface produces a stronger, safer, and more efficient contrast media. Gd(III)-diethylenetriamine pentaacetate-meglumine-dendrimer drug has the ability to enter cells and does not produce significant cytotoxicity. It also increases the relaxivity of tissue and enhances the MR images contrast. The obtained results confirm the hypothesis that the binding of gadopentetate to citric acid dendrimer produces a new, biodegradable, stable, and strong version of the old contrast media. 1. Introduction Cancer is known with uncontrolled cell growth. According to the TNM staging system, cancer has 4 stages. In the early stages, cancerous cells grow in their location. These cells can gradually spread to the surrounding tissues or move to other organs. Metastasis is a stage in which cancerous cells spread to the whole body through the lymphatic system or bloodstream. It is extremely harmful and can lead to death [1]. Despite the great efforts in the areas of prevention, diagnosis, and treatment of cancer, this disease continues to grow and is still a global killer. Based on the GLOBOCAN 2008 estimates—the standard set of worldwide estimates of cancer incidence and mortality—cancer is the leading cause of death in economically developed countries and the second leading cause of death in economically

References

[1]  M. Amanlou, S. D. Siadat, S. E. S. Ebrahimi, et al., “ -DTPA-DG: novel nanosized dual anticancer and molecular imaging agent,” International Journal of Nanomedicine, vol. 6, pp. 747–763, 2011.
[2]  A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA: A Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011.
[3]  A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA: A Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010.
[4]  L. Fass, “Imaging and cancer: a review,” Molecular Oncology, vol. 2, no. 2, pp. 115–152, 2008.
[5]  D. Weishaupt, V. D. K?chli, and B. Marincek, “Spin and the nuclear magnetic resonance phenomenon,” in How Dose MRI Work? An Introduction to the Physics and Function of the Magnetic Resonance Imaging, pp. 1–8, Springer, Berlin, Germany, 2003.
[6]  J. M. Reddy and V. Prasad, “MRI contrast agent,” in Step by Step MRI, pp. 124–132, Jaypee Brothers Medical Publishers, New Delhi, India, 2005.
[7]  A. Earnshaw and N. Greenwood, “The lanthanide elements,” in Chemistry of Elements, pp. 1227–1249, Elsevier Science, Burlington, Mass, USA, 1984.
[8]  H. A. Goldstein, F. K. Kashanian, R. F. Blumetti, W. L. Holyoak, F. P. Hugo, and D. M. Blumenfield, “Safety assessment of gadopentetate dimeglumine in U.S. clinical trials,” Radiology, vol. 174, no. 1, pp. 17–23, 1990.
[9]  R. A. Freitas Jr., “What is nanomedicine?” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 1, no. 1, pp. 2–9, 2005.
[10]  B. Klajnert and M. Bryszewska, “Dendrimers: properties and applications,” Acta Biochimica Polonica, vol. 48, no. 1, pp. 199–208, 2001.
[11]  P. Antoni, Y. Hed, A. Nordberg et al., “Bifunctional dendrimers: from robust synthesis and accelerated one-pot postfunctionalization strategy to potential applications,” Angewandte Chemie, vol. 48, no. 12, pp. 2126–2130, 2009.
[12]  K. Jain, P. Kesharwani, U. Gupta, and N. K. Jain, “Dendrimer toxicity: let's meet the challenge,” International Journal of Pharmaceutics, vol. 394, no. 1-2, pp. 122–142, 2010.
[13]  H. Namazi and M. Adeli, “Novel linear-globular thermoreversible hydrogel ABA type copolymers from dendritic citric acid as the A blocks and poly(ethyleneglycol) as the B block,” European Polymer Journal, vol. 39, no. 7, pp. 1491–1500, 2003.
[14]  T. Steger-Hartmann, R. Hofmeister, R. Ernst, H. Pietsch, M. A. Sieber, and J. Walter, “A review of preclinical safety data for magnevist (gadopentetate dimeglumine) in the context of nephrogenic systemic fibrosis,” Investigative Radiology, vol. 45, no. 9, pp. 520–528, 2010.
[15]  K. Wong, J. S. Ananta, S. lin, and L. J. Wilson, “In vitro relaxivities studies of gadolinium carbon nanotubes at 3T,” The International Society for Magnetic Resonance in Medicine, vol. 16, p. 1665, 2008.
[16]  A. D'Emanuele and D. Attwood, “Dendrimer-drug interactions,” Advanced Drug Delivery Reviews, vol. 57, no. 15, pp. 2147–2162, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133