Since binding of a drug molecule to human serum albumin (HSA) significantly affects the pharmacokinetics of the drug, it is highly desirable to predict the binding affinity of the drug. Profen drugs are a widely used class of nonsteroidal anti-inflammatory drugs and it has been reported that several members of the profen class specifically bind to one of the main binding sites named site II. The actual binding mode of only ibuprofen has been directly confirmed by X-ray crystallography. Therefore, it is of interest whether other profen drugs are site II binders. Docking simulations using multiple template structures of HSA from three crystal structures of complexes between drugs and HSA have demonstrated that most of the currently available profen drugs should be site II binders. 1. Introduction Human serum albumin (HSA) which is the most abundant plasma protein binds vast array of chemically diverse exogenous and endogenous molecules [1]. Binding of a drug molecule to HSA results in increased solubility in plasma, decreased toxicity, and protection against oxidation of the bound molecule. Since HSA binding is one of the important factors which determine the ADME properties of the drugs, it is highly desirable to know the binding affinity of drugs in order to avoid undesirable drug-drug interactions. There are two approaches to predict protein-ligand interactions. Ligand-based approaches mostly use quantitative structure-activity relationships (QSARs) which are based on chemical structures and physicochemical properties of a series of compounds whose HSA binding affinities have been measured [2]. High-resolution crystal structures of HSA complexed with various molecules have shown that there are two main binding sites named sites I and II [3]. As site I is large and flexible multichamber, a variety of different molecules can bind to site I. On the contrary, ligands binding to site II are usually aromatic carboxylic acids with a negative charged group at one end of the molecule away from a hydrophobic center. Based on the reliable crystal structures, structure-based approaches are possible. The molecular docking methods, in particular, which have been largely improved recently can be applied to predict the interaction modes of drugs and the binding sites in atomic detail comparable to the experimental results. Since nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used medications [4], the drug-drug interactions involving NSAIDs are important issues in many drug discovery projects. In particular, 2-aryl propionic acids (profen
References
[1]
S. Curry, “Lessons from the crystallographic analysis of small molecule binding to human serum albumin,” Drug Metabolism and Pharmacokinetics, vol. 24, no. 4, pp. 342–357, 2009.
[2]
G. Sudlow, D. J. Birkett, and D. N. Wade, “The characterization of two specific drug binding sites on human serum albumin,” Molecular Pharmacology, vol. 11, no. 6, pp. 824–832, 1975.
[3]
J. Ghuman, P. A. Zunszain, I. Petitpas, A. A. Bhattacharya, M. Otagiri, and S. Curry, “Structural basis of the drug-binding specificity of human serum albumin,” Journal of Molecular Biology, vol. 353, no. 1, pp. 38–52, 2005.
[4]
J. P. Curtis and H. M. Krumholz, “The case for an adverse interaction between aspirin and non-steroidal anti-inflammatory drugs: is it time to believe the hype?” Journal of the American College of Cardiology, vol. 43, no. 6, pp. 991–993, 2004.
[5]
B. Honoré and R. Brodersen, “Albumin binding of anti-inflammatory drugs. Utility of site-oriented versus a stoichiometric analysis,” Molecular Pharmacology, vol. 25, no. 1, pp. 137–150, 1984.
[6]
H. Watanabe, S. Tanase, K. Nakajou, T. Maruyama, U. Kragh-Hansen, and M. Otagiri, “Role of Arg-410 and Tyr-411 in human serum albumin for ligand binding and esterase-like activity,” Biochemical Journal, vol. 349, no. 3, pp. 813–819, 2000.
[7]
I. Sj?holm, B. Ekman, A. Kober, I. Ljungstedt-P?hlman, B. Seiving, and T. Sj?din, “Binding of drugs to human serum albumin: XI. The specificity of three binding sites as studied with albumin immobilized in microparticles,” Molecular Pharmacology, vol. 16, no. 3, pp. 767–777, 1979.
[8]
T. Nomura, K. Sakamoto, T. Imai, and M. Otagiri, “Study of interaction of pranoprofen with human serum albumin: binding properties of enantiomers and metabolite,” Journal of Pharmacobio-Dynamics, vol. 15, no. 10, pp. 589–596, 1992.
[9]
T. Maruyama, C. C. Lin, K. Yamasaki et al., “Binding of suprofen to human serum albumin. Role of the suprofen carboxyl group,” Biochemical Pharmacology, vol. 45, no. 5, pp. 1017–1026, 1993.
[10]
J. Goto, R. Kataoka, H. Muta, and N. Hirayama, “ASEDock-docking based on alpha spheres and excluded volumes,” Journal of Chemical Information and Modeling, vol. 48, no. 3, pp. 583–590, 2008.
[11]
I. D. Kuntz, K. Chen, K. A. Sharp, and P. A. Kollman, “The maximal affinity of ligands,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 18, pp. 9997–10002, 1999.
[12]
N. M. Green, “Avidin,” Advances in Protein Chemistry, vol. 29, no. 1, pp. 85–133, 1975.
[13]
T. Lazaridis, A. Masunov, and F. Gandolfo, “Contributions to the binding free energy of ligands to avidin and streptavidin,” Proteins, vol. 47, no. 2, pp. 194–208, 2002.
F. C. Bernstein, T. F. Koetzle, G. J. Williams et al., “The protein data bank: a computer based archival file for macromolecular structures,” Journal of Molecular Biology, vol. 112, no. 3, pp. 535–542, 1977.
[16]
P. J. Hajduk, R. Mendoza, A. M. Petros et al., “Ligand binding to domain-3 of human serum albumin: a chemometric analysis,” Journal of Computer-Aided Molecular Design, vol. 17, no. 2–4, pp. 93–102, 2003.
[17]
F. Zsila, Z. Bikadi, D. Malik et al., “Evaluation of drug-human serum albumin binding interactions with support vector machine aided online automated docking,” Bioinformatics, vol. 27, no. 13, Article ID btr284, pp. 1806–1813, 2011.
[18]
N. A. Kratochwil, W. Huber, F. Müller, M. Kansy, and P. R. Gerber, “Predicting plasma protein binding of drugs: a new approach,” Biochemical Pharmacology, vol. 64, no. 9, pp. 1355–1374, 2002.
[19]
N. Takamura, S. Shinozawa, T. Maruyama, A. Suenaga, and M. Otagiri, “Effects of fatty acids on serum binding between furosemide and valproic acid,” Biological and Pharmaceutical Bulletin, vol. 21, no. 2, pp. 174–176, 1998.