全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Microemulsion: New Insights into the Ocular Drug Delivery

DOI: 10.1155/2013/826798

Full-Text   Cite this paper   Add to My Lib

Abstract:

Delivery of drugs into eyes using conventional drug delivery systems, such as solutions, is a considerable challenge to the treatment of ocular diseases. Drug loss from the ocular surface by lachrymal fluid secretion, lachrymal fluid-eye barriers, and blood-ocular barriers are main obstacles. A number of ophthalmic drug delivery carriers have been made to improve the bioavailability and to prolong the residence time of drugs applied topically onto the eye. The potential use of microemulsions as an ocular drug delivery carrier offers several favorable pharmaceutical and biopharmaceutical properties such as their excellent thermodynamic stability, phase transition to liquid-crystal state, very low surface tension, and small droplet size, which may result in improved ocular drug retention, extended duration of action, high ocular absorption, and permeation of loaded drugs. Further, both lipophilic and hydrophilic characteristics are present in microemulsions, so that the loaded drugs can diffuse passively as well get significantly partitioned in the variable lipophilic-hydrophilic corneal barrier. This review will provide an insight into previous studies on microemulsions for ocular delivery of drugs using various nonionic surfactants, cosurfactants, and associated irritation potential on the ocular surface. The reported in vivo experiments have shown a delayed effect of drug incorporated in microemulsion and an increase in the corneal permeation of the drug. 1. Introduction The human eye is a complex structure designed in such a way that its anatomy, physiology, and biochemistry render it almost impervious to foreign agents, including drugs. The human eye has two segments, that is, anterior segment (cornea, conjunctiva, etc.) and posterior segment (vitreous humor, retina, etc.) as shown in detail in Figure 1. The human corneal epithelium represents one of the major rate-limiting barriers which hinders permeation of hydrophilic drugs and macromolecules. Another rate-limiting barrier is stroma which prevents diffusion of highly lipophilic drugs due to abundant hydrated collagen contents [1]. Other significant barriers include lacrimal fluid secretion and lachrymal fluid-eye barriers. Considering these barriers, it is very challenging to develop ocular drug delivery systems which can circumvent these protective barriers and deliver the drug to the posterior segment of the eye without causing permanent tissue damage [2]. Conventional dosage forms like ophthalmic solutions, suspensions, and so forth, are now primordial as they can only deliver the drug to the

References

[1]  A. Urtti, “Challenges and obstacles of ocular pharmacokinetics and drug delivery,” Advanced Drug Delivery Reviews, vol. 58, no. 11, pp. 1131–1135, 2006.
[2]  S. Duvvuri, S. Majumdar, and A. K. Mitra, “Drug delivery to the retina: challenges and opportunities,” Expert Opinion on Biological Therapy, vol. 3, no. 1, pp. 45–56, 2003.
[3]  H. Uusitalo, M. K?honen, A. Ropo et al., “Improved systemic safety and risk-benefit ratio of topical 0.1% timolol hydrogel compared with 0.5% timolol aqueous solution in the treatment of glaucoma,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 244, no. 11, pp. 1491–1496, 2006.
[4]  K. J?rvinen, T. J?rvinen, and A. Urtti, “Ocular absorption following topical delivery,” Advanced Drug Delivery Reviews, vol. 16, no. 1, pp. 3–19, 1995.
[5]  Y. Ali and K. Lehmussaari, “Industrial perspective in ocular drug delivery,” Advanced Drug Delivery Reviews, vol. 58, no. 11, pp. 1258–1268, 2006.
[6]  J. Barar, M. Asadi, S. A. Mortazavi-Tabatabaei, and Y. Omidi, “Ocular drug delivery, impact of in vitro cell culture models,” Journal of Ophthalmic and Vision Research, vol. 4, no. 4, pp. 238–252, 2009.
[7]  T. P. Hoar and J. H. Schulman, “Transparent water-in-oil dispersions: the oleopathic hydro-micelle,” Nature, vol. 152, no. 3847, pp. 102–103, 1943.
[8]  Th. F. Vandamme, “Microemulsions as ocular drug delivery systems: recent developments and future challenges,” Progress in Retinal and Eye Research, vol. 21, no. 1, pp. 15–34, 2002.
[9]  S. J. Chen, D. F. Evans, B. W. Ninham, D. J. Mitchell, F. D. Blum, and S. Pickup, “Curvature as a determinant of microstructure and microemulsions,” Journal of Physical Chemistry, vol. 90, no. 5, pp. 842–847, 1986.
[10]  M. J. Lawrence and G. D. Rees, “Microemulsion-based media as novel drug delivery systems,” Advanced Drug Delivery Reviews, vol. 45, no. 1, pp. 89–121, 2000.
[11]  L. M. Prince, “A theory of aqueous emulsions I. Negative interfacial tension at the oil/water interface,” Journal of Colloid And Interface Science, vol. 23, no. 2, pp. 165–173, 1967.
[12]  K. Shinoda and S. Friberg, “Microemulsions: colloidal aspects,” Advances in Colloid and Interface Science, vol. 4, no. 4, pp. 281–300, 1975.
[13]  E. Ruckenstein and R. Krishnan, “Effect of electrolytes and mixtures of surfactants on the oil-water, interface tension and their role in formation of microemulsions,” Journal of Colloid and Interface Science, vol. 76, no. 1, pp. 201–211, 1980.
[14]  M. Kahlweit, G. Busse, and B. Faulhaber, “Preparing nontoxic microemulsions with alkyl monoglucosides and the role of alkanediols as cosolvents,” Langmuir, vol. 12, no. 4, pp. 861–862, 1996.
[15]  M. J. Lawrence, “Surfactant systems: microemulsions and vesicles as vehicles for drug delivery,” European Journal of Drug Metabolism and Pharmacokinetics, vol. 19, no. 3, pp. 257–269, 1994.
[16]  R. Aboofazeli, N. Pate, M. Thomas, and M. J. Lawrence, “Investigations into the formation and characterization of phospholipid microemulsions. IV. Pseudo-ternary phase diagrams of systems containing water-lecithin-alcohol and oil; the influence of oil,” International Journal of Pharmaceutics, vol. 125, no. 1, pp. 107–116, 1995.
[17]  M. Kahlweit, G. Busse, B. Faulhaber, and H. Eibl, “Preparing nontoxic microemulsions,” Langmuir, vol. 11, no. 11, pp. 4185–4187, 1995.
[18]  K. Shinoda and B. Lindman, “Organized surfactant systems: microemulsions,” Langmuir, vol. 3, no. 2, pp. 135–149, 1987.
[19]  W. Pape, U. Pfannenbecker, H. Argembeaux et al., “COLIPA validation project on in vitro eye irritation tests for cosmetic ingredients and finished products (Phase I): the red blood cell test for the estimation of acute eye irritation potentials. Present status,” Toxicology in Vitro, vol. 13, no. 2, pp. 343–354, 1999.
[20]  N. P. Luepke, “Hen's egg chorioallantoic membrane test for irritation potential,” Food and Chemical Toxicology, vol. 23, no. 2, pp. 287–291, 1985.
[21]  J. Leighton, J. Nassauer, and R. Tchao, “The chick embryo in toxicology: an alternative to the rabbit eye,” Food and Chemical Toxicology, vol. 23, no. 2, pp. 293–298, 1985.
[22]  H. S. Ruth, D. Attwood, G. Ktistis, and C. J. Taylor, “Phase studies and particle size analysis of oil-in-water phospholipid microemulsions,” International Journal of Pharmaceutics, vol. 116, no. 2, pp. 253–261, 1995.
[23]  R. G. Alany, T. Rades, J. Nicoll, I. G. Tucker, and N. M. Davies, “W/O microemulsions for ocular delivery: evaluation of ocular irritation and precorneal retention,” Journal of Controlled Release, vol. 111, no. 1-2, pp. 145–152, 2006.
[24]  S. L. Fialho and A. da Silva-Cunha, “New vehicle based on a microemulsion for topical ocular administration of dexamethasone,” Clinical and Experimental Ophthalmology, vol. 32, no. 6, pp. 626–632, 2004.
[25]  F. F. Lv, N. Li, L. Q. Zheng, and C. H. Tung, “Studies on the stability of the chloramphenicol in the microemulsion free of alcohols,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 62, no. 3, pp. 288–294, 2006.
[26]  K. Kesavan, S. Kant, P. N. Singh, and J. K. Pandit, “Mucoadhesive chitosan-coated cationic microemulsion of dexamethasone for ocular delivery: in vitro and in vivo evaluation,” Current Eye Research, vol. 38, no. 3, pp. 342–352, 2013.
[27]  M. Beilin, A. Ilan, and S. Amselem, “Ocular retention time of submicron emulsion (SME) and the miotic response to pilocarpine delivered in SME,” Investigative Ophthalmology and Visual Science, vol. 36, p. S166, 1995.
[28]  P. Calvo, J. L. Vila-Jato, and M. J. Alonso, “Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers,” Journal of Pharmaceutical Sciences, vol. 85, no. 5, pp. 530–536, 1996.
[29]  S. Muchtar, M. Abdulrazik, J. Frucht-Pery, and S. Benita, “Ex-vivo permeation study of indomethacin from a submicron emulsion through albino rabbit cornea,” Journal of Controlled Release, vol. 44, no. 1, pp. 55–64, 1997.
[30]  P. Calvo, M. J. Alonso, J. L. Vila-Jato, and J. R. Robinson, “Improved ocular bioavailability of indomethacin by novel ocular drug carriers,” Journal of Pharmacy and Pharmacology, vol. 48, no. 11, pp. 1147–1152, 1996.
[31]  T. Hellweg, “Phase structures of microemulsions,” Current Opinion in Colloid and Interface Science, vol. 7, no. 1-2, pp. 50–56, 2002.
[32]  R. Strey, “Microemulsion microstructure and interfacial curvature,” Colloid & Polymer Science, vol. 272, no. 8, pp. 1005–1019, 1994.
[33]  G. Ktistis, “A viscosity study on oil-in-water microemulsions,” International Journal of Pharmaceutics, vol. 61, no. 3, pp. 213–218, 1990.
[34]  D. P. Acharya and P. G. Hartley, “Progress in microemulsion characterization,” Current Opinion in Colloid and Interface Science, vol. 17, no. 5, pp. 274–280, 2012.
[35]  M. Gradzielski, “Recent developments in the characterisation of microemulsions,” Current Opinion in Colloid and Interface Science, vol. 13, no. 4, pp. 263–269, 2008.
[36]  V. Hon-Leung Lee and J. R. Robinson, “Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits,” Journal of Pharmaceutical Sciences, vol. 68, no. 6, pp. 673–684, 1979.
[37]  J. B. Richman and D. D.-S. Tang-Liu, “A corneal perfusion device for estimating ocular bioavailability in vitro,” Journal of Pharmaceutical Sciences, vol. 79, no. 2, pp. 153–157, 1990.
[38]  R. D. Schoenwald and H. S. Huang, “Corneal penetration behavior of β-blocking agents. I: physicochemical factors,” Journal of Pharmaceutical Sciences, vol. 72, no. 11, pp. 1266–1272, 1983.
[39]  J. W. Sieg and J. R. Robinson, “Mechanistic studies on transcorneal permeation of pilocarpine,” Journal of Pharmaceutical Sciences, vol. 65, no. 12, pp. 1816–1822, 1976.
[40]  J. M. Conrad and J. R. Robinson, “Aqueous chamber drug distribution volume measurement in rabbits,” Journal of Pharmaceutical Sciences, vol. 66, no. 2, pp. 219–224, 1977.
[41]  H. Gupta, S. Jain, R. Mathur, P. Mishra, A. K. Mishra, and T. Velpandian, “Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system,” Drug Delivery, vol. 14, no. 8, pp. 507–515, 2007.
[42]  M. Gallarate, M. R. Gasco, and M. Trotta, “Influence of octanoic acid on membrane permeability of timolol from solutions and from microemulsions,” Acta Pharmaceutica Technologica, vol. 34, no. 2, pp. 102–105, 1988.
[43]  M. R. Gasco, M. Gallarate, M. Trotta, L. Bauchiero, E. Gremmo, and O. Chiappero, “Microemulsions as topical delivery vehicles: ocular administration of timolol,” Journal of Pharmaceutical and Biomedical Analysis, vol. 7, no. 4, pp. 433–439, 1989.
[44]  M. Gallarate, M. R. Gasco, M. Trotta, P. Chetoni, and M. F. Saettone, “Preparation and evaluation in vitro of solutions and o/w microemulsions containing levobunolol as ion-pair,” International Journal of Pharmaceutics, vol. 100, no. 1–3, pp. 219–225, 1993.
[45]  A. Ha?e and S. Keipert, “Development and characterization of microemulsions for ocular application,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 43, no. 2, pp. 179–183, 1997.
[46]  F. F. Lv, L. Zheng, and C. H. Tung, “Phase behavior of the microemulsions and the stability of the chloramphenicol in the microemulsion-based ocular drug delivery system,” International Journal of Pharmaceutics, vol. 301, no. 1-2, pp. 237–246, 2005.
[47]  J. Chan, G. Maghraby, J. P. Craig, and R. G. Alany, “Phase transition water-in-oil microemulsions as ocular drug delivery systems: in vitro and in vivo evaluation,” International Journal of Pharmaceutics, vol. 328, no. 1, pp. 65–71, 2007.
[48]  Y. Baspinar, E. Bertelmann, U. Pleyer, G. Buech, I. Siebenbrodt, and H. Borchert, “Corneal permeation studies of everolimus microemulsion,” Journal of Ocular Pharmacology and Therapeutics, vol. 24, no. 4, pp. 399–402, 2008.
[49]  M. Sergio, A. Danilo, S. M. G. Antonietta, and C. Melina, “Ophthalmic compositions for the administration of liposoluble active ingredients,” WO 154985A1, 2011.
[50]  A. S. B. Gobel, “Novel pharmaceutical composition comprising a macrolide immunosuppressant drug,” EP 2485714A1, 2012.
[51]  F. Carli, M. Barionian, R. Schmid, and E. Chiellini, “Ophthalmic oil in water emulsions containing prostaglandins,” US Patent: US, 8414904B2, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133