全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Formulation Development and Evaluation of Drug Release Kinetics from Colon-Targeted Ibuprofen Tablets Based on Eudragit RL 100-Chitosan Interpolyelectrolyte Complexes

DOI: 10.1155/2013/838403

Full-Text   Cite this paper   Add to My Lib

Abstract:

Colon-targeted drug delivery systems (CTDDSs) could be useful for local treatment of inflammatory bowel diseases (IBDs). In this study, various interpolyelectrolyte complexes (IPECs), formed between Eudragit RL100 (EL) and chitosan (CS), by nonstoichiometric method, and tablets based on the IPECs, prepared by wet granulation, were evaluated as potential oral CTDDSs for ibuprofen (IBF). Results obtained showed that the tablets conformed to compendial requirements for acceptance and that CS and EL formed IPECs that showed pH-dependent swelling properties and prolonged the in vitro release of IBF from the tablets in the following descending order: 3?:?2?>?2?:?3?>?1?:?1 ratios of CS and EL. An electrostatic interaction between the carbonyl (–CO–) group of EL and amino (– ) group of CS of the tablets formulated with the IPECs was capable of preventing drug release in the stomach and small intestine and helped in delivering the drug to the colon. Kinetic analysis of drug release profiles showed that the systems predominantly released IBF in a zero-order manner. IPECs based on CS and EL could be exploited successfully for colon-targeted delivery of IBF in the treatment of IBDs. 1. Introduction In recent years, various strategies have been adopted for specific drug delivery to well-defined sites of the gastrointestinal (GI) tract, the colon being the most important one [1–5]. Enteric polymers are used for this purpose, as they are able to release the drug at a particular pH. The pH-sensitive copolymers, such as methacrylic acid/methyl methacrylate copolymers and Eudragit types L and S, dissolve in aqueous media at pH 6 and 7, respectively, which may be equivalent to drug release in the distal ileum [6]. Similarly, chitosan-based polyelectrolyte complexes have been employed as potential carrier materials in drug delivery systems [7]. Furthermore, a growing interest in polyelectrolyte complexes has led to the formulation and characterization of systems involving a variety of anionic and cationic polymers: Eudragit L 30 D-55 and gelatin [8], Eudragit L 100-Eudragit S 100 [9], Eudragit E-Eudragit L [10, 11], Eudragit E-sodium alginate [12], chitosan-alginate/chitosan-carrageenan (mainly kappa-carrageenan with low amounts of lambda-carrageenan) [13], chitosan-polygalacturonic acid [14], chitosan-carboxymethylcellulose [15], and chitosan-alginate [16]. Conventional drug delivery is unfavourable to special cases where drug targeting is applied, that is, when avoidance of gastric dissolution or targeting to the colon is desirable. Colon-targeted drug delivery differs

References

[1]  H. Brondsted and J. Kopecek, “Hydrogels for site-specific drug delivery to the colon: in vitro and in vivo degradation,” Pharmaceutical Research, vol. 9, no. 12, pp. 1540–1545, 1992.
[2]  C. S. Leopold, “Coated dosage forms for colon-specific drug delivery,” Pharmaceutical Science and Technology Today, vol. 2, no. 5, pp. 197–204, 1999.
[3]  A. W. Basit, “Advances in colonic drug delivery,” Drugs, vol. 65, no. 14, pp. 1991–2007, 2005.
[4]  D. R. Friend, “New oral delivery systems for treatment of inflammatory bowel disease,” Advanced Drug Delivery Reviews, vol. 57, no. 2, pp. 247–265, 2005.
[5]  G. van den Mooter, “Colon drug delivery,” Expert Opinion on Drug Delivery, vol. 3, no. 1, pp. 111–125, 2006.
[6]  K. O. R. Lehmann, “Chemistry and application properties of polymethacrylate coating systems,” in Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms, J. W. McGinity, Ed., pp. 1–76, Marcel Dekker, New York, NY, USA, 1997.
[7]  J. H. Hamman, “Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems,” Marine Drugs, vol. 8, no. 4, pp. 1305–1322, 2010.
[8]  A. A. Attama, “Polyelectrolyte complexes of Eudragit L30 D-55 and gelatin: antinociceptive activity of entrapped piroxicam,” Drug Delivery, vol. 14, no. 3, pp. 155–162, 2007.
[9]  M. Z. I. Khan, H. P. ?tedul, and N. Kurjakovi?, “A pH-dependent colon-targeted oral drug delivery system using methacrylic acid copolymers. II. Manipulation of drug release using Eudragit L100 and Eudragit S100 combinations,” Drug Development and Industrial Pharmacy, vol. 26, no. 5, pp. 549–554, 2000.
[10]  R. I. Moustafine, T. V. Kabanova, V. A. Kemenova, and G. van den Mooter, “Characteristics of interpolyelectrolyte complexes of Eudragit E100 with Eudragit L100,” Journal of Controlled Release, vol. 103, no. 1, pp. 191–198, 2005.
[11]  R. I. Moustafine, I. M. Zaharov, and V. A. Kemenova, “Physicochemical characterization and drug release properties of Eudragit E PO/Eudragit L 100-55 interpolyelectrolyte complexes,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 63, no. 1, pp. 26–36, 2006.
[12]  R. I. Moustafine, V. A. Kemenova, and G. van den Mooter, “Characteristics of interpolyelectrolyte complexes of Eudragit E 100 with sodium alginate,” International Journal of Pharmaceutics, vol. 294, no. 1-2, pp. 113–120, 2005.
[13]  C. Tapia, Z. Escobar, E. Costa et al., “Comparative studies on polyelectrolyte complexes and mixtures of chitosan-alginate and chitosan-carrageenan as prolonged diltiazem clorhydrate release systems,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 57, no. 1, pp. 65–75, 2004.
[14]  W. Argüelles-Monal, G. Cabrera, C. Peniche, and M. Rinaudo, “Conductimetric study of the interpolyelectrolyte reaction between chitosan and polygalacturonic acid,” Polymer, vol. 41, no. 7, pp. 2373–2378, 2000.
[15]  C. Rosca, M. I. Popa, G. Lisa, and G. C. Chitanu, “Interaction of chitosan with natural or synthetic anionic polyelectrolytes. 1. The chitosan-carboxymethylcellulose complex,” Carbohydrate Polymers, vol. 62, no. 1, pp. 35–41, 2005.
[16]  L. Becherán-Marón, C. Peniche, and W. Argüelles-Monal, “Study of the interpolyelectrolyte reaction between chitosan and alginate: influence of alginate composition and chitosan molecular weight,” International Journal of Biological Macromolecules, vol. 34, no. 1-2, pp. 127–133, 2004.
[17]  N. C. Obitte, A. Chukwu, and I. V. Onyishi, “The use of a pH-dependent and Non pH-dependent natural hydrophobic biopolymer (Landolphia owariensis latex) as capsule coating agents in in vitro controlled release of metronidazole for possible colon targeted delivery,” International Journal of Applied Research in Natural Products, vol. 3, no. 1, pp. 1–17, 2010.
[18]  R. Kinget, W. Kalala, L. Vervoort, and G. van den Mooter, “Colonic drug targeting,” Journal of Drug Targeting, vol. 6, no. 2, pp. 129–149, 1998.
[19]  L. F. A. Asghar and S. Chandran, “Multiparticulate formulation approach to colon specific drug delivery: current perspectives,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 9, no. 3, pp. 327–338, 2006.
[20]  Remington: The Science and Practice of Pharmacy, Philadelphia College of Pharmacy and Science, Mack Publishing Company, Easton, Pa, USA, 19th edition, 1995.
[21]  E. B. Margulis and R. I. Moustafine, “Swellability testing of chitosan/Eudragit L100-55 interpolyelectrolyte complexes for colonic drug delivery,” Journal of Controlled Release, vol. 116, no. 2, pp. e36–e37, 2006.
[22]  R. I. Moustafine, E. B. Margulis, L. F. Sibgatullina, V. A. Kemenova, and G. V. D. Mooter, “Comparative evaluation of interpolyelectrolyte complexes of chitosan with Eudragit L100 and Eudragit L100-55 as potential carriers for oral controlled drug delivery,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 1, pp. 215–225, 2008.
[23]  H. J. Prado, M. C. Matulewicz, P. Bonelli, and A. L. Cukierman, “Basic butylated methacrylate copolymer/kappa-carrageenan interpolyelectrolyte complex: preparation, characterization and drug release behaviour,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 1, pp. 171–178, 2008.
[24]  A. Rajkumari, M. S. Kataki, K. B. Ilango, S. D. Devi, and P. Rajak, “Studies on the development of colon specific drug delivery system of ibuprofen using polysaccharide extracted from Abelmoschus esculentus L., (Moench),” Asian Journal of Pharmaceutical Sciences, vol. 7, no. 1, pp. 67–74, 2012.
[25]  R. I. Mustafin and T. V. Kabanova, “Diffusion transport properties of polymeric complex matrix systems based on eudragit E100 and L100 copolymers,” Pharmaceutical Chemistry Journal, vol. 39, no. 2, pp. 89–93, 2005.
[26]  R. I. Mustafin, A. A. Protasova, G. van den Mooter, and V. A. Kemenova, “Diffusion transport in interpolyelectrolyte matrix systems based on chitosan and eudragit L100,” Pharmaceutical Chemistry Journal, vol. 39, no. 12, pp. 663–666, 2005.
[27]  H. J. Prado, M. C. Matulewicz, P. R. Bonelli, and A. L. Cukierman, “Preparation and characterization of controlled release matrices based on novel seaweed interpolyelectrolyte complexes,” International Journal of Pharmaceutics, vol. 429, no. 1-2, pp. 12–21, 2012.
[28]  British Pharmacopoeia, Gentamicin, Pharmaceutical Press, London, UK, 2009.
[29]  T. Gebre-Mariam and A. S. Nikolayev, “Evaluation of starch obtained from Ensete ventricosum as a binder and disintegrant for compressed tablets,” Journal of Pharmacy and Pharmacology, vol. 45, no. 4, pp. 317–320, 1993.
[30]  V. A. Kabanov, “The cooperative interactions of complementary synthetic macromolecules in solutions,” in Proceedings of the International Symposium on Macromolecular Chemistry, vol. 8, pp. 121–145, Helsinki, Fla, USA, 1972.
[31]  A. B. Zezin and V. B. Rogacheva, “Polyelectrolyte complexes,” Advanced Chemical and Physical Polymers and Chemicals, pp. 3–30, 1973.
[32]  K. D. Yao, H. Tu, F. Cheng, J. W. Zhang, and J. Liu, “PH-sensitivity of the swelling of a chitosan-pectin polyelectrolyte complex,” Angewandte Makromolekulare Chemie, vol. 245, pp. 63–72, 1997.
[33]  T. Sakiyama, H. Takata, M. Kikuchi, and K. Nakanishi, “Polyelectrolyte complex gel with high pH-sensitivity prepared from dextran sulfate and chitosan,” Journal of Applied Polymer Science, vol. 73, no. 11, pp. 2227–2233, 1999.
[34]  V. C. Ibekwe, R. A. Kendall, and A. W. Basit, “Drug delivery to the colon,” The Drug Delivery Companies Report, Pharmaventures Limited, 2004.
[35]  D. F. Evans, G. Pye, R. Bramley, A. G. Clark, T. J. Dyson, and J. D. Hardcastle, “Measurement of gastrointestinal pH profiles in normal ambulant human subjects,” Gut, vol. 29, no. 8, pp. 1035–1041, 1988.
[36]  T. Kimura and K. Higaki, “Gastrointestinal transit and drug absorption,” Biological and Pharmaceutical Bulletin, vol. 25, no. 2, pp. 149–164, 2002.
[37]  M. K. Chourasia and S. K. Jain, “Pharmaceutical approaches to colon targeted drug delivery systems,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 6, no. 1, pp. 33–66, 2003.
[38]  A. Kramar, S. Turk, and F. Vre?er, “Statistical optimisation of diclofenac sustained release pellets coated with polymethacrylic films,” International Journal of Pharmaceutics, vol. 256, no. 1-2, pp. 43–52, 2003.
[39]  K. C. Ofokansi, M. U. Adikwu, and V. C. Okore, “Preparation and evaluation of mucin-gelatin mucoadhesive microspheres for rectal delivery of ceftriaxone sodium,” Drug Development and Industrial Pharmacy, vol. 33, no. 6, pp. 691–700, 2007.
[40]  A. Kuksal, A. K. Tiwary, N. K. Jain, and S. Jain, “Formulation and in vitro, in vivo evaluation of extended-release matrix tablet of zidovudine: influence of combination of hydrophilic and hydrophobic matrix formers,” AAPS PharmSciTech, vol. 7, no. 1, article 1, 2006.
[41]  S. Turner, C. Federici, M. Hite, and R. Fassihi, “Formulation development and human in vitro-in vivo correlation for a novel, monolithic controlled-release matrix system of high load and highly water-soluble drug niacin,” Drug Development and Industrial Pharmacy, vol. 30, no. 8, pp. 797–807, 2004.
[42]  V. Pillay and R. Fassihi, “Monolithic tablet for controlled drug release,” US Patent 6, 090411, 2000.
[43]  R. Fassihi and T. Durig, “Amino acid modulated extended release dosage form,” US Patent 6, 517, 868 B2, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133