A promising strategy to improve the therapeutic efficiency of antimicrobial agents is targeted therapy. Although vancomycin has been considered a gold standard for the therapy of MRSA pneumonia, clinical failure rates have also been reported owing to its slow, time-dependent bactericidal activity, variable lung tissue penetration and poor intracellular penetration into macrophages. Liposomal encapsulation has been established as an alternative for antimicrobial delivery to infected tissue macrophages and offers enhanced pharmacodynamics, pharmacokinetics and decreased toxicity compared to standard preparations. The aim of the present work is to prepare vancomycin in two different liposomal formulations, conventional and PEGylated liposomes using different methods. The prepared formulations were optimized for their particle size, encapsulation efficiency and physical stability. The dehydration-rehydration was found to be the best preparation method. Both the conventional and PEGylated liposomal formulations were successfully formulated with a narrow particle size and size distribution and % encapsulation efficiency of 9 ± 2 and 1 2 ± 3 , respectively. Both the formulations were stable at 4 ° C for 3 months. These formulations were successfully used to evaluate for their intracellular killing of MRSA and in vivo pharmacokinetic and bio-distribution studies. 1. Introduction Methicillin-resistant Staphylococcus aureus (MRSA) has become an increasingly important etiology of pneumonia both in healthcare and community settings. Although previously considered as a nosocomial pathogen, in recent years it has been diagnosed with increased incidence at hospital admission [1]. S. aureus causes a wide spectrum of mild to severe infections both in humans and animals [2]. Several factors contribute to the persistence and recurrence of these infections, but an important feature is the ability of the bacteria to invade and survive inside the phagocytic cells [3]. Vancomycin (Figure 1) has been considered a gold standard for the therapy of MRSA infections yet is poorly concentrated within human macrophages [4, 5]. Vancomycin is a branched, tricyclic, glycosylated, and nonribosomal peptide produced by Streptomyces orientalis [6]. It produces antibacterial activity without requiring the penetration of the lipid membrane [7]. Vancomycin binds with high-affinity D-alanine-D-alanine C-terminus of late peptidoglycan precursors to prevent transpeptidation required for synthesis of bacterial cell walls [8]. Clinical failures with vancomycin against methicillin-resistant
References
[1]
N. Zetola, J. S. Francis, E. L. Nuermberger, and W. R. Bishai, “Community-acquired meticillin-resistant Staphylococcus aureus an emerging threat,” The Lancet Infectious Diseases, vol. 5, no. 5, pp. 275–286, 2005.
[2]
F. D. Lowy, “Staphylococcus aureus infections,” The New England Journal of Medicine, vol. 339, no. 27, pp. 2026–2027, 1998.
[3]
F. D. Lowy, “Is Staphylococcus aureus an intracellular pathogen?” Trends in Microbiology, vol. 8, no. 8, pp. 341–343, 2000.
[4]
A. Pumerantz, K. Muppidi, S. Agnihotri et al., “Preparation of liposomal vancomycin and intracellular killing of meticillin-resistant Staphylococcus aureus (MRSA),” International Journal of Antimicrobial Agents, vol. 37, no. 2, pp. 140–144, 2011.
[5]
C. O. Onyeji, C. H. Nightingale, and M. N. Marangos, “Enhanced killing of methicillin-resistant Staphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin,” Infection, vol. 22, no. 5, pp. 338–342, 1994.
[6]
D. P. Levine, “Vancomycin: a history,” Clinical Infectious Diseases, vol. 42, no. 1, supplement 1, pp. S5–S12, 2006.
[7]
R. O'Shea and H. E. Moser, “Physicochemical properties of antibacterial compounds: implications for drug discovery,” Journal of Medicinal Chemistry, vol. 51, no. 10, pp. 2871–2878, 2008.
[8]
P. Courvalin, “Vancomycin resistance in gram-positive cocci,” Clinical Infectious Diseases, vol. 42, no. 1, supplement 1, pp. S25–S34, 2006.
[9]
R. C. Moellering, “Vancomycin: a 50-year reassessment,” Clinical Infectious Diseases, vol. 42, no. 1, supplement 1, pp. S3–S4, 2006.
[10]
A. D. Bangham, M. M. Standish, and J. C. Watkins, “Diffusion of univalent ions across the lamellae of swollen phospholipids,” Journal of Molecular Biology, vol. 13, no. 1, pp. 238–252, 1965.
[11]
S. Vemuri and C. T. Rhodes, “Preparation and characterization of liposomes as therapeutic delivery systems: a review,” Pharmaceutica Acta Helvetiae, vol. 70, no. 2, pp. 95–111, 1995.
[12]
S. Chatterjee and D. K. Banerjee, “Preparation, isolation, and characterization of liposomes containing natural and synthetic lipids,” Methods in Molecular Biology, vol. 199, pp. 3–16, 2002.
[13]
M. Voinea and M. Simionescu, “Designing of “intelligent” liposomes for efficient delivery of drugs,” Journal of Cellular and Molecular Medicine, vol. 6, no. 4, pp. 465–474, 2002.
[14]
I. Bakker-Woudenberg, et al., “Long-circulating sterically stabilized liposomes in the treatment of infections,” in Liposomes, pp. 228–260, Elsevier, San Diego, Calif, USA, 2005.
[15]
C. Kirby and G. Gergoriadis, “Dehydration-rehydration vesicles: a simple method for high yield drug entrapment in liposomes,” Biotechnology, vol. 2, no. 11, pp. 979–984, 1984.
[16]
S. B. Kulkarni, G. V. Betageri, and M. Singh, “Factors affecting microencapsulation of drugs in liposomes,” Journal of Microencapsulation, vol. 12, no. 3, pp. 229–246, 1995.
[17]
L. Grislain, P. Couvreur, and V. Lenaerts, “Pharmacokinetics and distribution of a biodegradable drug-carrier,” International Journal of Pharmaceutics, vol. 15, no. 3, pp. 335–345, 1983.
[18]
C. Nicolau and G. Poste, “Special issue—liposomes In vivo—foreword,” Biology of the Cell, vol. 47, no. 1, p. R2, 1983.
[19]
J. E. M. de Steenwinkel, W. van Vianen, M. T. ten Kate et al., “Targeted drug delivery to enhance efficacy and shorten treatment duration in disseminated Mycobacterium avium infection in mice,” Journal of Antimicrobial Chemotherapy, vol. 60, no. 5, pp. 1064–1073, 2007.
[20]
I. Bakker-Woudenberg, “Long-circulating sterically stabilized liposomes as carriers of agents for treatment of infection or for imaging infectious foci,” International Journal of Antimicrobial Agents, vol. 19, no. 4, pp. 299–311, 2002.
[21]
E. Maurer-Spurej, K. F. Wong, N. Maurer, D. B. Fenske, and P. R. Cullis, “Factors influencing uptake and retention of amino-containing drugs in large unilamellar vesicles exhibiting transmembrane pH gradients,” Biochimica et Biophysica Acta, vol. 1416, no. 1-2, pp. 1–10, 1999.
[22]
B. Zadi and G. Gregoriadis, “A novel method for high-yield entrapment of solutes into small liposomes,” Journal of Liposome Research, vol. 10, no. 1, pp. 73–80, 2000.
[23]
S. H. Jung, S. H. Jung, H. Seong, S. H. Cho, K. S. Jeong, and B. C. Shin, “Polyethylene glycol-complexed cationic liposome for enhanced cellular uptake and anticancer activity,” International Journal of Pharmaceutics, vol. 382, no. 1-2, pp. 254–261, 2009.
[24]
K. E. Anderson, L. A. Eliot, B. R. Stevenson, and J. A. Rogers, “Formulation and evaluation of a folic acid receptor-targeted oral vancomycin liposomal dosage form,” Pharmaceutical Research, vol. 18, no. 3, pp. 316–322, 2001.
[25]
J. M. Voyich, K. R. Braughton, D. E. Sturdevant et al., “Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils,” Journal of Immunology, vol. 175, no. 6, pp. 3907–3919, 2005.
[26]
M. Kubica, K. Guzik, J. Koziel et al., “A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages,” Plos One, vol. 3, no. 1, 2008.
[27]
S. K. Fridkin, J. Hageman, L. K. McDougal et al., “Epidemiological and microbiological characterization of infections caused by Staphylococcus aureus with reduced susceptibility to vancomycin, United States, 1997—2001,” Clinical Infectious Diseases, vol. 36, no. 4, pp. 429–439, 2003.
[28]
B. P. Howden, P. B. Ward, P. G. P. Charles et al., “Treatment outcomes for serious infections caused by methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility,” Clinical Infectious Diseases, vol. 38, no. 4, pp. 521–528, 2004.
[29]
A. Soriano, F. Marco, J. A. Martinez et al., “Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia,” Clinical Infectious Diseases, vol. 46, no. 2, pp. 193–200, 2008.
[30]
G. Steinkraus, R. White, and L. Friedrich, “Vancomycin MIC creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001–05,” Journal of Antimicrobial Chemotherapy, vol. 60, no. 4, pp. 788–794, 2007.
[31]
E. Y. Choi, J. W. Huh, C.-M. Lim et al., “Relationship between the MIC of vancomycin and clinical outcome in patients with MRSA nosocomial pneumonia,” Intensive Care Medicine, vol. 37, no. 4, pp. 639–647, 2011.
[32]
G. Sakoulas, P. A. Moise-Broder, J. Schentag, A. Forrest, R. C. Moellering, and G. M. Eliopoulos, “Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia,” Journal of Clinical Microbiology, vol. 42, no. 6, pp. 2398–2402, 2004.
[33]
P. A. Moise-Broder, A. Forrest, M. C. Birmingham, and J. J. Schentag, “Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections,” Clinical Pharmacokinetics, vol. 43, no. 13, pp. 925–942, 2004.
[34]
T. Nakamura, M. Takano, M. Yasuhara, and K. I. Inui, “In-vivo clearance study of vancomycin in rats,” Journal of Pharmacy and Pharmacology, vol. 48, no. 11, pp. 1197–1200, 1996.
[35]
D. D. Lasic, “Novel applications of liposomes,” Trends in Biotechnology, vol. 16, no. 7, pp. 307–321, 1998.
[36]
H. Komatsu, H. Saito, S. Okada, M. Tanaka, M. Egashira, and T. Handa, “Effects of the acyl chain composition of phosphatidylcholines on the stability of freeze-dried small liposomes in the presence of maltose,” Chemistry and Physics of Lipids, vol. 113, no. 1-2, pp. 29–39, 2001.
[37]
J. H. Crowe and L. M. Crowe, “Factors affecting the stability of dry liposomes,” Biochimica et Biophysica Acta, vol. 939, no. 2, pp. 327–334, 1988.
[38]
J. H. Crowe, F. Tablin, W. F. Wolkers, K. Gousset, N. M. Tsvetkova, and J. Ricker, “Stabilization of membranes in human platelets freeze-dried with trehalose,” Chemistry and Physics of Lipids, vol. 122, no. 1-2, pp. 41–52, 2003.
[39]
T. M. Allen, C. Hansen, F. Martin, C. Redemann, and A. F. Yau-Young, “Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo,” Biochimica et Biophysica Acta, vol. 1066, no. 1, pp. 29–36, 1991.
[40]
S. R. Dipali, S. B. Kulkarni, and G. V. Betageri, “Comparative study of separation of non-encapsulated drug from unilamellar liposomes by various methods,” Journal of Pharmacy and Pharmacology, vol. 48, no. 11, pp. 1112–1115, 1996.
[41]
W. R. Perkins, S. R. Minchey, P. L. Ahl, and A. S. Janoff, “The determination of liposome captured volume,” Chemistry and Physics of Lipids, vol. 64, no. 1–3, pp. 197–217, 1993.
[42]
A. J. Bradley, D. V. Devine, S. M. Ansell, J. Janzen, and D. E. Brooks, “Inhibition of liposome-induced complement activation by incorporated poly(ethylene glycol)-lipids,” Archives of Biochemistry and Biophysics, vol. 357, no. 2, pp. 185–194, 1998.
[43]
V. D. Awasthi, D. Garcia, B. A. Goins, and W. T. Phillips, “Circulation and biodistribution profiles of long-circulating PEG-liposomes of various sizes in rabbits,” International Journal of Pharmaceutics, vol. 253, no. 1-2, pp. 121–132, 2003.