全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fabrication and Development of Pectin Microsphere of Metformin Hydrochloride

DOI: 10.5402/2012/230621

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose. The objective of the proposed work is to evaluate the efficacy of Pectins to qualify them as polymers for designing an oral microsphere for the delivery of selected oral antidiabetic drug-like metformin hydrochloride. Methods. Different Microspheres formulations were prepared by the water in oil (w\o) emulsion solvent evaporation technique and subsequently evaluated for its different physical parameters as well as its in vitro and in vivo drug release study. Results. The formulations F2 (98.42) and F3 (98.03) showed a constant and high release in the dissolution profile, so among these two formulations, F2 was taken for development study, due to the better result shown over in other evaluation parameters. From the HPLC determinations after in vivo study, it had been found that the test samples and the standard sample had not shown any significant fluctuation in relation to their retention time. Conclusion. From in vitro and in??vivo results, it may be concluded that drug-loaded pectin microspheres in 1?:?1 ratio are a suitable delivery system for metformin hydrochloride and may be used for effective management of NIDDM. From this experiment, it could be concluded that as a natural polymer, pectin has potentiality in novel drug delivery system. 1. Introduction The novel system of drug delivery offers a means of improving the therapeutic effectiveness of incorporated drugs by providing sustained, controlled delivery and targeting the drug to desired site. A number of systems containing various types of polymer and wax were fabricated with drugs into dosage form with the aim of sustaining drug levels and hence drug action is obtained for an extended period of time [1]. However, a lack of understandings of anatomical and physiological barriers imposed impediment on the development of efficient delivery system. The modern era of controlled release technology represents the period in which an attempt at drug development is emphasized. The drug delivery system should deliver a drug at a rate dictated by the needs of the body over a specified period of treatment [2]. Pectin was first isolated and described in 1825 by Henri Braconnot, though the action of pectin to make jams and marmalades was known long before. To obtain well-set jams from fruits that had little or only poor quality pectin, pectin-rich fruits or their extracts were mixed into the recipe. During industrialization, the makers of fruit preserves soon turned to producers of apple juice to obtain dried apple pomace that was then cooked to extract pectin [3]. Naturally, pectin in the form of

References

[1]  J. M. Gwen and J. R. Robinson, “Sustained and controlled release drug delivery systems,” in Modern Pharmaceutics, vol. 72, p. 575, Marcel Dekker, New York, NY, USA, 3rd edition, 1996.
[2]  W. Y. Thomas and J. R. Robinson, “Controlled release drug delivery system,” in The Science and Practice of Pharmacy, vol. 1, p. 903, 20th edition, 2001.
[3]  P. Sriamornsak, “Chemistry of pectin and its pharmaceutical uses : a review,” Silpakorn University International Journal, vol. 3, no. 1-2, pp. 206–228, 2003.
[4]  L. S. Liu, Y. J. Won, P. H. Cooke et al., “Pectin/poly(lactide-co-glycolide) composite matrices for biomedical applications,” Biomaterials, vol. 25, no. 16, pp. 3201–3210, 2004.
[5]  P. K. Choudhury and M. Kar, “Controlled release metformin hydrochloride microspheres of ethyl cellulose prepared by different methods and study on the polymer affected parameters,” Journal of Microencapsulation, vol. 26, no. 1, pp. 46–53, 2009.
[6]  A. Semalty and M. Semalty, “Preparation and characterization of mucoadhesive microspheres of ciprofloxacin hydrochloride,” in Controlled Release Polymeric Formulations, pp. 345–351, American Chemical Society, 1993.
[7]  K. N. Shovarni and A. G. Goundalkar, “Preparation and evaluation of microsphere of diclofenac sodium,” Indian Journal of Pharmaceutical Sciences, vol. 56, no. 2, pp. 45–50, 1994.
[8]  P. K. Rout and B. S. Nayak, “Formulation design, preparation of losartan potassium microspheres by solvent evaporation method and it's in vitro characterization,” Archives of Pharmaceutical Sciences and Research, vol. 1, no. 1, pp. 166–170, 2009.
[9]  M. C. Gohel, R. K. Parikh, and A. Surati, “Preparation and formulation evaluation of diclofenac sodium,” Indian Journal of Pharmaceutical Sciences, vol. 67, no. 5, pp. 575–581, 2005.
[10]  D. R. Bhumkar and M. M. Patil, “Studies on effect of variabilities by response methodology for naproxane microspheres,” Indian Drugs, vol. 40, no. 8, pp. 455–461, 2003.
[11]  K. Abu-Izza, L. Garcia-Contreras, and D. R. Lu, “Preparation and evaluation of zidovudine-loaded sustained-release microspheres. 2. Optimization of multiple response variables,” Journal of Pharmaceutical Sciences, vol. 85, no. 6, pp. 572–576, 1996.
[12]  J. Wang and D. R. Flanagan, “General solution for diffusion-controlled dissolution of spherical particles. 1. Theory,” Journal of Pharmaceutical Sciences, vol. 88, no. 7, pp. 731–738, 1999.
[13]  D. M. Morkhade, S. V. Fulzele, P. M. Satturwar, and S. B. Joshi, “Gum copal and gum damar: Novel matrix forming materials for sustained drug delivery,” Indian Journal of Pharmaceutical Sciences, vol. 68, no. 1, pp. 53–58, 2006.
[14]  T. Higuchi, “Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices,” Journal of Pharmaceutical Sciences, vol. 52, no. 12, pp. 1145–1149, 1963.
[15]  H. Fesssi, J.-P. Marty, F. Puisieux, and J. T. Carstensen, “The Higuchi square root equation applied to matrices with high content of soluble drug substance,” International Journal of Pharmaceutics, vol. 1, no. 5, pp. 265–274, 1978.
[16]  S. Bolton, “Analylisis of varience,” in Pharmaceutical Statistics-Practical and Clinical Application, pp. 235–269, Marcel Dekker, New York, NY, USA, 1997.
[17]  K. Rajagopal and K. Sasikala, “Antihyperglycaemic and antihyperlipidaemic effects of Nymphaea stellata in alloxan-induced diabetic rats,” Singapore Medical Journal, vol. 49, no. 2, pp. 137–141, 2008.
[18]  P. Daisy and M. Rajathi, “Hypoglycemic effects of Clitoria ternatea Linn. (Fabaceae) in alloxan-induced diabetes in rats,” Tropical Journal of Pharmaceutical Research, vol. 8, no. 5, pp. 393–398, 2009.
[19]  R. L. Thies, D. W. Cowens, P. R. Cullis, M. B. Bally, and L. D. Mayer, “Method for rapid separation of liposome-associated doxorubicin from free doxorubicin in plasma,” Analytical Biochemistry, vol. 188, no. 1, pp. 65–71, 1990.
[20]  D. Jain, S. Jain, D. Jain, and M. Amin, “Simultaneous estimation of metformin hydrochloride, pioglitazone hydrochloride, and glimepiride by RP-HPLC in tablet formulation,” Journal of Chromatographic Science, vol. 46, no. 6, pp. 501–504, 2008.
[21]  G. R. Chatwal and S. K. Anand, “Infrared absorption spectroscopy,” in Instrumental Methods of Chemical Analysis, pp. 2.29–2.82, Himalayan Publishing House, Mumbai, India, 5th edition, 2005.
[22]  W. Kemp, “Infrared spectroscopy,” in Organic Spectroscopy, pp. 19–99, ELBS with Macmillan, Hong Kong, China, 3rd edition, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133