全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Application of Sephadex LH-20 for Microdetermination of Dopamine by Solid Phase Spectrophotometry

DOI: 10.5402/2012/216068

Full-Text   Cite this paper   Add to My Lib

Abstract:

A sensitive spectrophotometric method for the determination of dopamine was carried out without any separation steps. Bromocresol green is adsorbed on Sephadex LH-20 gel but the sorption decreases in the presence of dopamine due to ion-pair formation between bromocresol green and dopamine in solution. This attenuation was used to the microdetermination of dopamine by measurement of absorbance of the solid phase (Sephadex LH-20 gel) in a 1.0?mm cell at 625?nm. Dopamine could be determined in the concentration range of 0.4–1.6?μg?mL?1 (10-mL Sample volume) with a relative standard deviation (RSD) of 0.03% ( ). The detection limit was obtained, 0.26?μg?mL?1 (1.7?μM). The method was used for determination of dopamine in pharmaceutical injection sample and satisfactory result was obtained. 1. Introduction Dopamine (DP) has been used for treating all kinds of shock syndromes. It is very important to find a simple and sensitive method to determine the content of DP in clinical medicine. Pharmaceutical quality standard of many countries describes a nonaqueous titration method for determination of DP in injection, for example, the 1990 edition of Chinese pharmacopoeia and USP XXI. HPLC method was described for the determination of DP in USP 24 and BP 2000 with expensive apparatus [1]. Chemiluminescence has also been applied to determine DP; however, chemiluminescence reactants have hardly found extensive applications due to the instability of the oxidation reagents [2, 3]. Electrochemical detection methods have also been introduced since these are the best ways to directly determine DP without any separation steps of samples. The existence of ascorbic acid (AA) is the main obstacle in electrochemical detection system since AA is oxidized at similar potentials to DP at conventional electrodes. Therefore, modified electrodes have been used to simultaneously detect both DP and AA at different potentials [4–12]. The spectrophotometry has also been used for determination of DP with the use of organic compounds that react with DP [13–20]. However, in this work, the determination of DP is carried out with inhibition of the sorption of bromocresol green (BCG) on a solid phase from an aqueous solution, and the subsequent measurement of absorption, directly in the solid phase. Solid phase spectrophotometry (SPS) in visible region has been less used for determination of organic compounds [21]. We present an innovative work to use SPS in visible region for determination of DP. A higher molar absorptivity was obtained by this proposed method than other spectrophotometric

References

[1]  N. Yang, J. Li, and L. Zhang, “HPLC determination of dopamine hydrochloride in dopamine hydrochloride and sodium chloride injection,” Chinese Journal of Pharmaceutical Analysis, vol. 23, pp. 232–232, 2003.
[2]  S. M. Wabaidur, Z. A. Alothman, S. M. Alam, and S. H. Lee, “Flow injection-chemiluminescence determination of dopamine using potassium permanganate and formaldehyde system,” Spectrochimica Acta, vol. 96, pp. 221–225, 2012.
[3]  M. Grünhut, V. L. Martins, M. E. Centurión, M. C. U. Araújo, and B. S. F. Band, “Flow-batch analyzer for the chemiluminescence determination of catecholamines in pharmaceutical preparations,” Analytical Letters, vol. 44, no. 1–3, pp. 67–81, 2011.
[4]  H. R. Zare, N. Rajabzadeh, N. Nasirizadeh, and M. Mazloum Ardakani, “Voltammetric studies of an oracet blue modified glassy carbon electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid,” Journal of Electroanalytical Chemistry, vol. 589, no. 1, pp. 60–69, 2006.
[5]  H. R. Zare, N. Nasirizadeh, and M. Mazloum Ardakani, “Electrochemical properties of a tetrabromo-p-benzoquinone modified carbon paste electrode. Application to the simultaneous determination of ascorbic acid, dopamine and uric acid,” Journal of Electroanalytical Chemistry, vol. 577, no. 1, pp. 25–33, 2005.
[6]  H. Yao, Y. Sun, X. Lin, Y. Tang, and L. Huang, “Electrochemical characterization of poly(eriochrome black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid,” Electrochimica Acta, vol. 52, no. 20, pp. 6165–6171, 2007.
[7]  Z. Wang, J. Liu, Q. Liang, Y. Wang, and G. Luo, “Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid,” Analyst, vol. 127, no. 5, pp. 653–658, 2002.
[8]  Z. H. Wang, Q. L. Liang, Y. M. Wang, and G. A. Luo, “Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid,” Journal of Electroanalytical Chemistry, vol. 540, pp. 129–134, 2003.
[9]  C. Wang, R. Yuan, Y. Chai, S. Chen, F. Hu, and M. Zhang, “Simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrode,” Analytica Chimica Acta, vol. 741, pp. 15–20, 2012.
[10]  S. Thiagarajan and S. M. Chen, “Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid,” Talanta, vol. 74, no. 2, pp. 212–222, 2007.
[11]  G. P. Keeley, N. McEvoy, H. Nolan et al., “Simultaneous electrochemical determination of dopamine and paracetamol based on thin pyrolytic carbon films,” Analytical Methods, vol. 4, pp. 2048–2053, 2012.
[12]  Z. H. Sheng, X. Q. Zheng, J. Y. Xu, W. J. Bao, F. B. Wang, and X. H. Xia, “Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid,” Biosensors and Bioelectronics, vol. 34, pp. 125–131, 2012.
[13]  A. A. Elbashir, A. A. Ahmed, S. M. A. Ahmed, and H. Y. Aboul-Enein, “1, 2-Naphthoquinone-4-sulphonic acid sodium salt (NQS) as an analytical reagent for the determination of pharmaceutical amine by spectrophotometry,” Applied Spectroscopy Reviews, vol. 47, pp. 219–232, 2012.
[14]  Q. Li, J. Li, and Z. Yang, “Study of the sensitization of tetradecyl benzyl dimethyl ammonium chloride for spectrophotometric determination of dopamine hydrochloride using sodium 1,2-naphthoquinone-4-sulfonate as the chemical derivative chromogenic reagent,” Analytica Chimica Acta, vol. 583, no. 1, pp. 147–152, 2007.
[15]  P. Nagaraja, K. C. S. Murthy, K. S. Rangappa, and N. M. M. Gowda, “Spectrophotometric methods for the determination of certain catecholamine derivatives in pharmaceutical preparations,” Talanta, vol. 46, no. 1, pp. 39–44, 1998.
[16]  P. Nagaraja, R. A. Vasantha, and K. R. Sunitha, “A new sensitive and selective spectrophotometric method for the determination of catechol derivatives and its pharmaceutical preparations,” Journal of Pharmaceutical and Biomedical Analysis, vol. 25, no. 3-4, pp. 417–424, 2001.
[17]  P. Nagaraja, R. A. Vasantha, and K. R. Sunitha, “A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations,” Talanta, vol. 55, no. 6, pp. 1039–1046, 2001.
[18]  M. R. Hormozi Nezhad, J. Tashkhourian, and J. Khodaveisi, “Sensitive spectrophotometric detection of dopamine, levodopa and adrenaline using surface plasmon resonance band of silver nanoparticles,” Journal of the Iranian Chemical Society, vol. 7, no. 1, pp. S83–S91, 2010.
[19]  L. Guo, Y. Zhang, and Q. Li, “Spectrophotometric determination of dopamine hydrochloride in pharmaceutical, banana, urine and serum samples by potassium ferricyanide-Fe(III),” Analytical Sciences, vol. 25, no. 12, pp. 1451–1455, 2009.
[20]  M. E. El-Kommos, “Spectrophotometric assay of dopamine hydrochloride injection using thiosemicarbazide,” Journal de Pharmacie de Belgique, vol. 42, no. 6, pp. 371–376, 1987.
[21]  S. Matsuoka and K. Yoshimura, “Recent trends in solid phase spectrometry: 2003–2009. A Review,” Analytica Chimica Acta, vol. 664, no. 1, pp. 1–18, 2010.
[22]  N. Silva and E. E. S. Schapoval, “Spectrophotometric determination of etidocaine in pharmaceutical (dental) formulation,” Journal of Pharmaceutical and Biomedical Analysis, vol. 29, no. 4, pp. 749–754, 2002.
[23]  A. Safavi, N. Maleki, O. Moradlou, and F. Tajabadi, “Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode,” Analytical Biochemistry, vol. 359, no. 2, pp. 224–229, 2006.
[24]  T. Selvaraju and R. Ramaraj, “Simultaneous determination of ascorbic acid, dopamine and serotonin at poly(phenosafranine) modified electrode,” Electrochemistry Communications, vol. 5, no. 8, pp. 667–672, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133