全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Review of Hot-Melt Extrusion: Process Technology to Pharmaceutical Products

DOI: 10.5402/2012/436763

Full-Text   Cite this paper   Add to My Lib

Abstract:

Over the last three decades industrial adaptability has allowed hot-melt extrusion (HME) to gain wide acceptance and has already established its place in the broad spectrum of manufacturing operations and pharmaceutical research developments. HME has already been demonstrated as a robust, novel technique to make solid dispersions in order to provide time controlled, modified, extended, and targeted drug delivery resulting in improved bioavailability as well as taste masking of bitter active pharmaceutical ingredients (APIs). This paper reviews the innumerable benefits of HME, based on a holistic perspective of the equipment, processing technologies to the materials, novel formulation design and developments, and its varied applications in oral drug delivery systems. 1. Introduction To date HME has emerged as a novel processing technology in developing molecular dispersions of active pharmaceutical ingredients (APIs) into various polymer or/and lipid matrices which has led this technique to demonstrate time controlled, modified, extended, and targeted drug delivery [1–4]. HME has now provided opportunity for use of materials in order to mask the bitter taste of active substances. Since the industrial application of the extrusion process back in the 1930’s, HME has received considerable attention from both the pharmaceutical industry and academia in a range of applications for pharmaceutical dosage forms, such as tablets, capsules, films, and implants for drug delivery via oral, transdermal, and transmucosal routes [5]. This makes HME an excellent alternative to other conventionally available techniques such as roll spinning and spray drying. In addition to being a proven manufacturing process, HME meets the goal of the US Food and Drug Administration’s (FDA) process analytical technology (PAT) scheme for designing, analyzing, and controlling the manufacturing process via quality control measurements during active extrusion process [6]. In this chapter, the hot-melt extrusion technique is reviewed based on a holistic perspective of its various components, processing technologies, and the materials and novel formulation design and developments in its varied applications in oral drug delivery systems. 2. Process Technology of Hot-Melt Extrusion (HME) Hot-melt extrusion technique was first invented for the manufacturing of lead pipes at the end of the eighteenth century [7]. Since then, it has been used in the plastic, rubber, and food manufacturing industry to produce items ranging from pipes to sheets and bags. With the advent of high throughput screening,

References

[1]  M. Maniruzzaman, J. S. Boateng, M. Bonnefille, A. Aranyos, J. C. Mitchell, and D. Douroumis, “Taste masking of paracetamol by hot melt extrusion: an in vitro and in vivo evaluation,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 80, no. 2, pp. 433–442, 2012.
[2]  M. A. Repka, S. Shah, J. Lu et al., “Melt extrusion: process to product,” Expert Opinion on Drug Delivery, vol. 9, no. 1, pp. 105–125, 2012.
[3]  M. A. Repka, S. Majumdar, S. K. Battu, R. Srirangam, and S. B. Upadhye, “Applications of hot-melt extrusion for drug delivery,” Expert Opinion on Drug Delivery, vol. 5, no. 12, pp. 1357–1376, 2008.
[4]  M. A. Repka, S. K. Battu, S. B. Upadhye et al., “Pharmaceutical applications of hot-melt extrusion: part II,” Drug Development and Industrial Pharmacy, vol. 33, no. 10, pp. 1043–1057, 2007.
[5]  M. M. Crowley, F. Zhang, M. A. Repka et al., “Pharmaceutical applications of hot-melt extrusion: part I,” Drug Development and Industrial Pharmacy, vol. 33, no. 9, pp. 909–926, 2007.
[6]  M. Charlie, “Continous mixing of solid dosage forms via hot-melt extrusion,” Pharmaceutical Technology, vol. 32, no. 10, pp. 76–86, 2008.
[7]  S. James, Encyclopedia of Pharmaceutical Technology, Marcel Dekker, New York, NY, USA, 3rd edition, 2004.
[8]  G. P. Andrews and D. S. Jones, “Formulation and characterization of hot melt extruded dosage forms: challenges and opportunities,” Cheminform, vol. 41, no. 43, 2010.
[9]  J. Breitenbach, “Melt extrusion: from process to drug delivery technology,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 54, no. 2, pp. 107–117, 2002.
[10]  G. P. Andrews, D. N. Margetson, D. S. Jones, M. S. McAllister, and O. A. Diak, “Hot-melt extrusion: an emerging drug delivery technology,” Pharmaceutical Technology Europe, vol. 21, no. 1, pp. 24–27, 2009.
[11]  N. Follonier, E. Doelker, and E. T. Cole, “Evaluation of hot-melt extrusion as a new technique for the production of polymer-based pellets for sustained release capsules containing high loadings of freely soluble drugs,” Drug Development and Industrial Pharmacy, vol. 20, no. 8, pp. 1323–1339, 1994.
[12]  A. Gryczke, Melt Extrusion with EUDRAGIT Solubility Enhancement Modified Release. Degussa, R?HM GmbH & Co. KG, Darmstadt, Germany, 2006.
[13]  R. Chokshi and H. Zia, “Hot-melt extrusion technique: a review,” International Journal of Pharmaceutical Research, vol. 3, pp. 3–16, 2004.
[14]  T. Whelan and D. Dunning, The Dynisco Extrusion Processors Handbook, London School of Polymer Technology, Polytechnic of North London, London, UK, 1st edition, 1988.
[15]  G. P. Andrews, D. N. Margetson, D. S. Jones, S. M. McAllister, and O. A. Diak, A Basic Guide: Hot-melt Extrusion, vol. 13, UKICRS, 2008.
[16]  J. L. White, Twin Screw Extrusion: Technology and Principles, Hanser/Gardner, Cincinnati, Ohio, USA, 1991.
[17]  http://www.pharinfo.net/reviews/meltgranulationtechniques/reviews.
[18]  J. W. McGnity and J. J. KOleng, “Preparation and evaluation of rapid release granules using novel melt extrusion technique,” American Association of Pharmaceutical Scientists, pp. 153–154, 2004.
[19]  D. S. Jones, “Engineering drug delivery using polymer extrusion/injection moulding technologies,” School of Pharmacy, vol. 4-9, pp. 18–27, 2008.
[20]  H. H. Grunhagen and O. Muller, “Melt extrusion technology,” Pharmaceutical Manufacturing International, vol. 1, pp. 167–170, 1995.
[21]  S. Singhal, V. K. Lohar, and V. Arora, “Hot-melt extrusion technique,” WebmedCentral Pharmaceutical Sciences, vol. 2, no. 1, Article ID 001459, 2011.
[22]  M. Mollan, “Historical overview,” in Pharmaceutical Extrusion Technology, I. Ghebre-Sellassie and C. Martin, Eds., pp. 1–18, CRC Press, New York, NY, USA, 2003.
[23]  A. Senouci, A. Smith, and P. Richmond, “Extrusion cooking,” Chemical Engineer, no. 417, pp. 30–33, 1985.
[24]  E. Sebestyen, “Problems of grains preservation in storage facilities,” Journal of Flour and Animal Feed Milling, vol. 10, pp. 24–25, 1974.
[25]  D. J. Wedlock and D. V. Wijngaarden, “Fast dispersing solid PVP-containing crop protection formulation and process therefore,” US Patent 1992, 5: 665, 369.
[26]  M. A. Repka, M. A. Elsohly, M. Munjal, and S. A. Ross, “Temperature stability and bioadhesive properties of Δ9-tetrahydrocannabinol incorporated hydroxypropylcellulose polymer matrix systems,” Drug Development and Industrial Pharmacy, vol. 32, no. 1, pp. 21–32, 2006.
[27]  M. Maniruzzaman, M. Rana, J. S. Boateng, and D. Douroumis, “Dissolution enhancement of poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic polymers,” Drug development and Industrial Pharmacy. In press.
[28]  J. O. Morales and J. T. McConville, “Manufacture and characterization of mucoadhesive buccal films,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 77, no. 2, pp. 187–199, 2011.
[29]  X. Zheng, R. Yang, X. Tang, and L. Zheng, “Part I: characterization of solid dispersions of nimodipine prepared by hot-melt extrusion,” Drug Development and Industrial Pharmacy, vol. 33, no. 7, pp. 791–802, 2007.
[30]  S. S. Jana and R. Miloslava, “Hot-melt extrusion,” Ceská a Slovenská Farmacie, vol. 61, no. 3, pp. 87–92, 2012.
[31]  F. Cilurzo, I. E. Cupone, P. Minghetti, F. Selmin, and L. Montanari, “Fast dissolving films made of maltodextrins,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 3, pp. 895–900, 2008.
[32]  F. Zhang and J. W. McGinity, “Properties of sustained-release tablets prepared by hot-melt extrusion,” Pharmaceutical Development and Technology, vol. 4, no. 2, pp. 241–250, 1999.
[33]  M. M. Crowley, F. Zhang, J. J. Koleng, and J. W. McGinity, “Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion,” Biomaterials, vol. 23, no. 21, pp. 4241–4248, 2002.
[34]  J. Breitkreutz, F. El-Saleh, C. Kiera, P. Kleinebudde, and W. Wiedey, “Pediatric drug formulations of sodium benzoate: II. Coated granules with a lipophilic binder,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 56, no. 2, pp. 255–260, 2003.
[35]  C. De Brabander, C. Vervaet, L. Fiermans, and J. P. Remon, “Matrix mini-tablets based on starch/microcrystalline wax mixtures,” International Journal of Pharmaceutics, vol. 199, no. 2, pp. 195–203, 2000.
[36]  C. De Brabander, C. Vervaet, and J. P. Remon, “Development and evaluation of sustained release mini-matrices prepared via hot melt extrusion,” Journal of Controlled Release, vol. 89, no. 2, pp. 235–247, 2003.
[37]  E. Roblegg, E. J?ger, A. Hodzic et al., “Development of sustained-release lipophilic calcium stearate pellets via hot melt extrusion,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 79, pp. 635–645, 2011.
[38]  M. R. Clark, T. J. Johnson, R. T. McCabe et al., “A hot-melt extruded intravaginal ring for the sustained delivery of the antiretroviral microbicide UC781,” Journal of Pharmaceutical Sciences, vol. 101, no. 2, pp. 576–587, 2012.
[39]  L. Li, O. AbuBaker, and Z. Shao, “Characterization of poly(ethylene oxide) as a drug carrier in hot-melt extrusion,” Drug Development and Industrial Pharmacy, vol. 32, no. 8, pp. 991–1002, 2006.
[40]  B. Rambali, G. Verreck, L. Baert, and D. L. Massar, “Itraconazole formulation studies of the melt-extrusion process with mixture design,” Drug Development and Industrial Pharmacy, vol. 29, no. 6, pp. 641–652, 2003.
[41]  K. Six, H. Berghmans, C. Leuner et al., “Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion, part II,” Pharmaceutical Research, vol. 20, no. 7, pp. 1047–1054, 2003.
[42]  K. Six, T. Daems, J. De Hoon et al., “Clinical study of solid dispersions of itraconazole prepared by hot-stage extrusion,” European Journal of Pharmaceutical Sciences, vol. 24, no. 2-3, pp. 179–186, 2005.
[43]  A. Gryczke, S. Schminke, M. Maniruzzaman, J. Beck, and D. Douroumis, “Development and evaluation of orally disintegrating tablets (ODTs) containing Ibuprofen granules prepared by hot melt extrusion,” Colloids and Surfaces B, vol. 86, no. 2, pp. 275–284, 2011.
[44]  R. J. Chokshi, N. H. Shah, H. K. Sandhu, A. W. Malick, and H. Zia, “Stabilization of low glass transition temperature indomethacin formulations: impact of polymer-type and its concentration,” Journal of Pharmaceutical Sciences, vol. 97, no. 6, pp. 2286–2298, 2008.
[45]  G. P. Andrews, D. S. Jones, O. A. Diak, C. P. McCoy, A. B. Watts, and J. W. McGinity, “The manufacture and characterisation of hot-melt extruded enteric tablets,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 69, no. 1, pp. 264–273, 2008.
[46]  E. Mehuys, J. P. Remon, and C. Vervaet, “Production of enteric capsules by means of hot-melt extrusion,” European Journal of Pharmaceutical Sciences, vol. 24, no. 2-3, pp. 207–212, 2005.
[47]  D. A. Miller, J. T. McConville, W. Yang, R. O. Williams, and J. W. McGinity, “Hot-melt extrusion for enhanced delivery of drug particles,” Journal of Pharmaceutical Sciences, vol. 96, no. 2, pp. 361–376, 2007.
[48]  G. Verreck, A. Decorte, K. Heymans et al., “Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer,” International Journal of Pharmaceutics, vol. 327, no. 1-2, pp. 45–50, 2006.
[49]  D. Douroumis, “Practical approaches of taste masking technologies in oral solid forms,” Expert Opinion on Drug Delivery, vol. 4, no. 4, pp. 417–426, 2007.
[50]  D. Douroumis, “Orally disintegrating dosage forms and taste-masking technologies,” Expert Opinion on Drug Delivery, vol. 8, no. 5, pp. 665–675, 2010.
[51]  R. Witzleb, V. R. Kanikanti, H. J. Hamann, and P. Kleinebudde, “Solid lipid extrusion with small die diameters—electrostatic charging, taste masking and continuous production,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 77, pp. 170–177, 2011.
[52]  J. Vaassena, K. Bartscherb, and J. Breitkreutza, “Taste masked lipid pellets with enhanced release of hydrophobic active ingredient,” International Journal of Pharmaceutics, vol. 429, pp. 99–103, 2012.
[53]  J. C. Gutierrez-Rocca and J. W. McGinity, “Influence of aging on the physical-mechanical properties of acrylic resin films cast from aqueous dispersions and organic solutions,” Drug Development and Industrial Pharmacy, vol. 19, no. 3, pp. 315–332, 1993.
[54]  C. R. Steuernagel, “Latex emulsions for controlled drug delivery,” in Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms, J. W. McGinity, Ed., vol. 79, Marcel Dekker, New York, NY, USA, 1997.
[55]  S. Barnhart, “Thin film oral dosage forms,” in Modified-Release Drug Delivery Technology, M. J. Rathbone, J. Hadgraft, M. S. Roberts, and M. E. Lane, Eds., pp. 209–216, Informa Healthcare, 2008.
[56]  “February 2009, ICH topic Q3C (R3) impurities: residual solvents,” International Conference on Harmonization, http://www.emea.europa.eu/pdfs/human/ich/028395en.pdf.
[57]  C. R. Palem, B. S. Kumar, S. Maddineni, R. Gannu, M. A. Repka, and M. R. Yamsani, “Oral transmucosal delivery of domperidone from immediate release films produced via hotmelt extrusion technology,” Pharmaceutical Developments and Technology. In press.
[58]  M. A. Repka, J. W. McGinity, F. Zhang, and J. J. Koleng, Encyclopedia of Pharmaceutical Technology, Marcel Dekker, NewYork, NY, USA, 2002.
[59]  V. S. Tumuluri, M. S. Kemper, I. R. Lewis et al., “Off-line and on-line measurements of drug-loaded hot-melt extruded films using Raman spectroscopy,” International Journal of Pharmaceutics, vol. 357, no. 1-2, pp. 77–84, 2008.
[60]  S. Prodduturi, R. V. Manek, W. M. Kolling, S. P. Stodghill, and M. A. Repka, “Solid-state stability and characterization of hot-melt extruded poly(ethylene oxide) films,” Journal of Pharmaceutical Sciences, vol. 94, no. 10, pp. 2232–2245, 2005.
[61]  M. A. Repka, K. Gutta, S. Prodduturi, M. Munjal, and S. P. Stodghill, “Characterization of cellulosic hot-melt extruded films containing lidocaine,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 59, no. 1, pp. 189–196, 2005.
[62]  M. A. Repka and J. W. McGinity, “Bioadhesive properties of hydroxypropylcellulose topical films produced by hot-melt extrusion,” Journal of Controlled Release, vol. 70, no. 3, pp. 341–351, 2001.
[63]  S. Thumma, S. Majumdar, M. A. ElSohly, W. Gul, and M. A. Repka, “Preformulation studies of a prodrug of Δ9-tetrahydrocannabinol,” AAPS PharmSciTech, vol. 9, no. 3, pp. 982–990, 2008.
[64]  M. A. Repka, T. G. Gerding, S. L. Repka, and J. W. McGinity, “Influence of plasticizers and drugs on the physical-mechanical properties of hydroxypropylcellulose films prepared by hot melt extrusion,” Drug Development and Industrial Pharmacy, vol. 25, no. 5, pp. 625–633, 1999.
[65]  S. Prodduturi, R. V. Manek, W. M. Kolling, S. P. Stodghill, and M. A. Repka, “Water vapor sorption of hot-melt extruded hydroxypropyl cellulose films: effect on physico-mechanical properties, release characteristics, and stability,” Journal of Pharmaceutical Sciences, vol. 93, no. 12, pp. 3047–3056, 2004.
[66]  M. Kopcha, K. J. Tojo, and N. G. Lordi, “Evaluation of methodology for assessing release characteristics of thermosoftening vehicles,” Journal of Pharmacy and Pharmacology, vol. 42, no. 11, pp. 745–751, 1990.
[67]  S. Thumma, M. A. ElSohly, S. Q. Zhang, W. Gul, and M. A. Repka, “Influence of plasticizers on the stability and release of a prodrug of Δ9-tetrahydrocannabinol incorporated in poly (ethylene oxide) matrices,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 2, pp. 605–614, 2008.
[68]  P. K. Mididoddi and M. A. Repka, “Characterization of hot-melt extruded drug delivery systems for onychomycosis,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 66, no. 1, pp. 95–105, 2007.
[69]  M. Wilson, M. A. Williams, D. S. Jones, and G. P. Andrews, “Hot-melt extrusion technology and pharmaceutical application,” Therapeutic Delivery, vol. 3, no. 6, pp. 787–797, 2012.
[70]  C. E. Klein, Y. L. Chiu, W. Awni et al., “The tablet formulation of lopinavir/ritonavir provides similar bioavailability to the soft-gelatin capsule formulation with less pharmacokinetic variability and diminished food effect,” Journal of Acquired Immune Deficiency Syndromes, vol. 44, no. 4, pp. 401–410, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133