全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Automatic Tube Compensation versus Pressure Support Ventilation and Extubation Outcome in Children: A Randomized Controlled Study

DOI: 10.1155/2013/871376

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Automatic tube compensation (ATC) has been developed to overcome the imposed work of breathing due to artificial airways during spontaneous breathing trials (SBTs). Objectives. This study aimed to assess extubation outcome after an SBT (spontaneous breathing trial) with ATC compared with pressure support ventilation (PSV) and to determine the risk factors for extubation failure. Methods. Patients ready for extubation were randomly assigned to two-hour spontaneous breathing trial with either ATC or pressure support ventilation. Results. In the ATC group ( ), 11 (65%) patients passed the SBT with subsequent extubation failure (9%). While in PSV group ( ), 10 (53%) patients passed the SBT with subsequent extubation failure (10%). This represented a positive predictive value for ATC of 91% and PSV of 90% ( ). Five (83%) of the patients who failed the SBT in ATC group were reintubated. This represented a higher negative predictive value for ATC of 83% than for PSV which was 56%. None of the assessed risk factors were independently associated with extubation failure including failed trial. Conclusion. ATC was equivalent to PSV in predicting patients with successful extubation. A trial failure in ATC group is associated with but does not definitely predict extubation failure. 1. Introduction Prolonged and unnecessary delay in tracheal extubation result in increased complication rates for patients receiving mechanical ventilation including airway trauma, chronic lung disease, ventilator associated pneumonia, and increased hospital costs [1]. On the other hand-premature discontinuation carries a set of problems involving difficulty in establishing airways and compromised blood gas exchange [2]. Different methods, including clinical trials and calculated indices, have been developed to evaluate patients on mechanical ventilation and predict the optimum time to make the weaning decision [3]. These methods include, tolerances of spontaneous breathing trials (SBTs), counting the respiratory rate, observation of work of breathing, and many other calculated indices such as the oxygenation index, measurement of the tidal volume and dynamic compliance, and the commonly used rapid shallow breathing index. However, some of these indices may be misleading, cost-effective, and requiring highly sophisticated equipments [4]. Recently, a tolerance of a spontaneous breathing trial while the patient receives varying levels of ventilatory support including continuous positive airway pressure (CPAP), low-level pressure support ventilation (PSV), or very recently

References

[1]  J. Farias, I. Alía, A. Retta et al., “An evaluation of extubation failure predictors in mechanically ventilated infants and children,” Intensive Care Medicine, vol. 28, no. 6, pp. 752–757, 2002.
[2]  S. K. Sinha and S. M. Donn, “Weaning from assisted ventilation: art or science?” Archives of Disease in Childhood: Fetal and Neonatal Edition, vol. 83, no. 1, pp. F64–F70, 2000.
[3]  M. Meade, G. Guyatt, D. Cook et al., “Predicting success in weaning from mechanical ventilation,” Chest, vol. 120, no. 6, pp. 4005–4245, 2001.
[4]  B. L. Baumeister, M. el-Khatib, P. G. Smith, and J. L. Blumer, “Evaluation of predictors of weaning from mechanical ventilation in pediatric patients,” Pediatric Pulmonology, vol. 24, no. 5, pp. 344–352, 1997.
[5]  T. E. Robertson, C. Sona, L. Schallom et al., “Improved extubation rates and earlier liberation from mechanical ventilation with implementation of a daily spontaneous-breathing trial protocol,” Journal of the American College of Surgeons, vol. 206, no. 3, pp. 489–495, 2008.
[6]  J. D. Cohen, M. Shapiro, E. Grozovski, S. Lev, H. Fisher, and P. Singer, “Extubation outcome following a spontaneous breathing trial with automatic tube compensation versus continuous positive airway pressure,” Critical Care Medicine, vol. 34, no. 3, pp. 682–686, 2006.
[7]  J. Cohen, M. Shapiro, E. Grozovski, B. Fox, S. Lev, and P. Singer, “Prediction of extubation outcome: a randomised, controlled trial with automatic tube compensation vs. pressure support ventilation,” Critical Care, vol. 13, no. 1, article R21, 2009.
[8]  N. Eskandar and M. J. Apostolakos, “Weaning from mechanical ventilation,” Critical Care Clinics, vol. 23, no. 2, pp. 263–274, 2007.
[9]  C. Haberthür, G. Mols, S. Elsasser, R. Bingisser, R. Stocker, and J. Guttmann, “Extubation after breathing trials with automatic tube compensation, T-tube, or pressure support ventilation,” Acta Anaesthesiologica Scandinavica, vol. 46, no. 8, pp. 973–979, 2002.
[10]  G. Ferreyra, S. Weber-Cartens, V. Aquadrone, et al., “Comparison of automatic tube compensation (ATC) with pressure support ventilation (PSV) during spontaneous breathing trials,” Intensive Care Medicine, vol. 33, p. s57, 2007.
[11]  A. Chavez, R. D. Cruz, and A. Zaritsky, “Spontaneous breathing trial predicts successful extubation in infants and children,” Pediatric Critical Care Medicine, vol. 7, no. 4, pp. 324–328, 2006.
[12]  M. M. Pollack, K. M. Patel, and U. E. Ruttimann, “PRISM III: an updated pediatric risk of mortality score,” Critical Care Medicine, vol. 24, no. 5, pp. 743–752, 1996.
[13]  A. G. Randolph, D. Wypij, S. T. Venkataraman et al., “Effect of mechanical ventilator weaning protocols on respiratory outcomes in infants and children: a randomized controlled trial,” Journal of the American Medical Association, vol. 288, no. 20, pp. 2561–2568, 2002.
[14]  L. H. Mathers and L. R. Frankel, “Pediatric emergencies and resuscitation,” in Nelson Textbook of Pediatrics, R. M. Kliegman, R. E. Behrman, H. B. Jenson, and B. F. Stanton, Eds., Saunders Elsevier, Philadelphia, Pa, USA, 18th edition, 2007.
[15]  World Medical Association Declaration of Helsinki, Ethical Principles for Medical Research Involving Human Subjects, 59th WMA General Assembly, Seoul, Republic of Korea, 2008.
[16]  J. M. Siner and C. A. Manthous, “Liberation from mechanical ventilation: what monitoring matters?” Critical Care Clinics, vol. 23, no. 3, pp. 613–638, 2007.
[17]  M. A. Tanios, M. L. Nevins, K. P. Hendra et al., “A randomized, controlled trial of the role of weaning predictors in clinical decision making,” Critical Care Medicine, vol. 34, no. 10, pp. 2530–2535, 2006.
[18]  S. K. Epstein, “Extubation failure: an outcome to be avoided,” Critical Care, vol. 8, no. 5, pp. 310–312, 2004.
[19]  J. R. Gowardman, D. Huntington, and J. Whiting, “The effect of extubation failure on outcome in a multidisciplinary Australian intensive care unit,” Critical Care and Resuscitation, vol. 8, no. 4, pp. 328–333, 2006.
[20]  A. De Lassence, C. Alberti, E. Azoulay et al., “Impact of unplanned extubation and reintubation after weaning on nosocomial pneumonia risk in the intensive care unit: a prospective multicenter study,” Anesthesiology, vol. 97, no. 1, pp. 148–156, 2002.
[21]  D. J. Dries, M. D. McGonigal, M. S. Malian, B. J. Bor, and C. Sullivan, “Protocol-driven ventilator weaning reduces use of mechanical ventilation, rate of early reintubation, and ventilator-associated pneumonia,” The Journal of Trauma, vol. 56, no. 5, pp. 943–951, 2004.
[22]  A. Kulkarni and V. Agarwal, “Extubation failure in intensive care unit: predictors and management,” Indian Journal of Critical Care Medicine, vol. 12, no. 1, pp. 1–9, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133