全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Determinants of Oxygen Therapy in Childhood Pneumonia in a Resource-Constrained Region

DOI: 10.1155/2013/435976

Full-Text   Cite this paper   Add to My Lib

Abstract:

Childhood pneumonia is a leading cause of morbidity and mortality among underfives particularly in the resource-constraint part of the world. A high proportion of these deaths are due to lack of oxygen, thereby making oxygen administration a life-saving adjunctive when indicated. However, many primary health centres that manage most of the cases often lack the adequate manpower and facilities to decide which patient should be on oxygen therapy. Therefore, this study aimed to determine factors that predict hypoxaemia at presentation in children with severe pneumonia. Four hundred and twenty children aged from 2 to 59 months (40% infants) with severe pneumonia admitted to a health centre in rural Gambia were assessed at presentation. Eighty-one of them (19.30%) had hypoxaemia (oxygen saturation < 90%). Children aged 2–11 months, with grunting respiration, cyanosis, and head nodding, and those with cardiomegaly on chest radiograph were at higher risk of hypoxaemia ( ). Grunting respiration ( , 95% CI 2.287–7.482) and cyanosis ( , 95% CI 5.248–355.111) were independent predictors of hypoxaemia in childhood pneumonia. We conclude that children that grunt and are centrally cyanosed should be preferentially commenced on oxygen therapy even when there is no facility to confirm hypoxaemia. 1. Introduction Pneumonia is the inflammation of the lung parenchyma mostly caused by infectious agents in children [1]. These infectious agents are mainly bacteria and viruses. The inflammatory changes in the lungs impair effective gas exchange leading to its various clinical manifestations [1]. Childhood pneumonia is a leading cause of morbidity and mortality in under-fives especially in developing countries [2, 3]. It is a major cause of hospital admission and death being responsible for approximately one out of every five deaths among under-fives globally [2, 3]. The World Health Organization (WHO) estimated that about 156 million new cases of pneumonia occur in under-five children each year worldwide, of which 151 million episodes (>90 percent) occur in the developing world [2]. This translates to an incidence in under-five children estimated to be 0.29 episodes per child-year (with an interquartile range 0.21–0.71) in developing countries and 0.05 episodes per child-year in developed countries [2]. Most cases of pneumonia occur in Asia and sub-Saharan Africa with India (43 million), China (21 million), Indonesia and Nigeria (6 million each), taking the lion’s share of the burden [2, 3]. A recent report from Gambia estimated that 13.4 episodes of severe pneumonia per 1000

References

[1]  T. C. Sectish and C. G. Prober, “Pneumonia,” in Nelson Textbook of Pediatrics, R. E. Behrman, R. M. Kliegman, and H. B. Jensen, Eds., pp. 1432–1436, WB Saunders, Philadelphia, Pa, USA, 17th edition, 2004.
[2]  I. Rudan, L. Tomaskovic, C. Boschi-Pinto, and H. Campbell, “Global estimate of the incidence of clinical pneumonia among children under five years of age,” Bulletin of the World Health Organization, vol. 82, no. 12, pp. 895–903, 2004.
[3]  B. G. Williams, E. Gouws, C. Boschi-Pinto, J. Bryce, and C. Dye, “Estimates of world-wide distribution of child deaths from acute respiratory infections,” Lancet Infectious Diseases, vol. 2, no. 1, pp. 25–32, 2002.
[4]  F. T. Cutts, S. M. A. Zaman, G. Enwere, et al., “Efficacy of nine-valent pneumococcal conjugate vaccine against pneumonia and invasive pneumococcal disease in Gambia. Randomized, double-blind, placebo-controlled trial,” The Lancet, vol. 365, pp. 1139–146, 2005.
[5]  B. M. Greenwood, A. M. Greenwood, A. K. Bradley, S. Tulloch, R. Hayes, and F. S. Oldfield, “Deaths in infancy and early childhood in a well-vaccinated, rural, West African population,” Annals of Tropical Paediatrics, vol. 7, no. 2, pp. 91–99, 1987.
[6]  K. Mulholland, “Childhood pneumonia mortality—a permanent global emergency,” The Lancet, vol. 370, no. 9583, pp. 285–289, 2007.
[7]  P. Ayieko and M. English, “Case management of childhood pneumonia in developing countries,” Pediatric Infectious Disease Journal, vol. 26, no. 5, pp. 432–440, 2007.
[8]  WHO, “WHO programme for the control of acute respiratory infections. Acute respiratory infections in children: case management in small hospitals in developing countries,” Tech. Rep. 5, WHO, Geneva, Switzerland, 1990.
[9]  S. Usen, M. Weber, K. Mulholland et al., “Clinical predictors of hypoxaemia in Gambian children with acute lower respiratory tract infection: prospective cohort study,” British Medical Journal, vol. 318, no. 7176, pp. 86–91, 1999.
[10]  S. Usen and M. Weber, “Clinical signs of hypoxaemia in children with acute lower respiratory infection: indicators of oxygen therapy,” International Journal of Tuberculosis and Lung Disease, vol. 5, no. 6, pp. 505–510, 2001.
[11]  M. Laman, P. Ripa, J. Vince, and N. Tefuarani, “Can clinical signs predict hypoxaemia in Papua New Guinean children with moderate and severe pneumonia?” Annals of Tropical Paediatrics, vol. 25, no. 1, pp. 23–27, 2005.
[12]  F. E. Onyango, M. C. Steinhoff, E. M. Wafula, S. Wariua, J. Musia, and J. Kitonyi, “Hypoxaemia in young Kenyan children with acute lower respiratory infection,” British Medical Journal, vol. 306, no. 6878, pp. 612–615, 1993.
[13]  N. J. Bennett and R. W. Steele, “Pediatric Pneumonia,” May 2011, http://emedicine.medscape.com/article/967822-overview.
[14]  R. Rodriguez-Roisin and J. Roca, “Update '96 on pulmonary gas exchange pathophysiology in pneumonia,” Seminars in Respiratory Infections, vol. 11, no. 1, pp. 3–12, 1996.
[15]  T. E. West, T. Goetghebuer, P. Milligan, E. K. Mulholland, and M. W. Weber, “Long-term morbidity and mortality following hypoxaemic lower respiratory tract infection in Gambian children,” Bulletin of the World Health Organization, vol. 77, no. 2, pp. 144–148, 1999.
[16]  E. K. Mulholland, L. Smith, I. Carneiro, H. Becherc, and D. Lehmann, “Equity and child-survival strategies,” Bulletin of the World Health Organization, vol. 86, no. 5, pp. 399–407, 2008.
[17]  Basse Demographic Data base. The Gambia, January 2011, http://www.accessgambia.com/information/basse-santa-su.html.
[18]  G. A. Oyedeji, “Socioeconomic and cultural background of hospitalized children in Ilesa,” The Nigerian Journal of Paediatrics, vol. 13, pp. 111–118, 1985.
[19]  K. Park, “Environment and Health,” in Park's Textbook of Preventive and Social Medicine, pp. 521–536, Banarasidas Bhanot and Company, Jabalpur, India, 16th edition, 2006.
[20]  T. Cherian, E. K. Mulholland, J. B. Carlin et al., “Standardized interpretation of paediatric chest radiographs for the diagnosis of pneumonia in epidemiological studies,” Bulletin of the World Health Organization, vol. 83, no. 5, pp. 353–359, 2005.
[21]  E. F. Philbin, R. Garg, K. Danisa et al., “The relationship between cardiothoracic ratio and left ventricular ejection fraction in congestive heart failure,” Archives of Internal Medicine, vol. 158, no. 5, pp. 501–506, 1998.
[22]  K. Tiewsoh, R. Lodha, R. M. Pandey, S. Broor, M. Kalaivani, and S. K. Kabra, “Factors determining the outcome of children hospitalized with severe pneumonia,” BMC Pediatrics, vol. 9, no. 1, article 15, 2009.
[23]  C. M. Nascimento-Carvalho, H. Rocha, R. Santos-Jesus, and Y. Benguigui, “Childhood pneumonia: clinical aspects associated with hospitalization or death,” The Brazilian Journal of Infectious Diseases, vol. 6, no. 1, pp. 22–28, 2002.
[24]  P. A. Margolis, T. W. Ferkol, S. Marsocci et al., “Accuracy of the clinical examination in detecting hypoxemia in infants with respiratory illness,” Journal of Pediatrics, vol. 124, no. 4, pp. 552–560, 1994.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133