全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Role of Organochlorine Pesticides in Children with Idiopathic Seizures

DOI: 10.1155/2013/849709

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Organochlorine pesticides (OCP) are persistent organic pollutants that have been implicated in causing several deleterious effects in humans. These are known neurotoxins in high doses, but the role of environmentally acquired OCPs in the body to induce seizures in children has not been investigated yet. Objectives. To assess the serum levels of OCPs in children aged 2–12 with idiopathic seizure and to find out any association between the two are our objectives. Methods. It was a cross-sectional pilot study. Twenty developmentally normal children aged 2–12, presenting with idiopathic generalized seizures, were recruited. Twenty age-matched controls without any history of seizures were also taken. Their serum levels of , , and hexachlorocyclohexane (HCH); and aldrin; dieldrin; p,p-dichlorodiphenyltrichloroethane (DDT), o,p-DDT, and p,p dichlorodiphenyldichloroethylene (DDE); and and endosulfan were analysed using gas chromatography (GC). Mann-Whitney test was used to compare OCP levels between the groups. Spearman correlation was used to find the correlation between individual pesticide levels with age and seizure duration. Results. Levels of , , and total HCH were significantly higher among cases as compared to the control group ( ). Conclusion. There exists a possible association between idiopathic seizures and high serum levels of OCPs, especially HCH. 1. Introduction Organochlorine pesticides (OCPs) are amongst the most commonly used pesticides in developing countries because of their low cost and broad spectrum of activity against various pests. India hosts one of the largest pesticide manufacturing industries in the world, producing around 90,000 metric tons of pesticides every year [1]. OCPs are persistent organic pollutants (POPs) that are toxic and bioaccumulative in nature [2, 3]. These pesticides not only tend to accumulate in adipose tissue but also biomagnify through food chain due to their lipophilic nature and long half-lives [4]. They have a wide range of acute and chronic health effects like cancer, reproductive disorders, immune suppression, congenital defects, and endocrine dysfunction [5–7]. Hexachlorocyclohexane (HCH) isomers including lindane ( -HCH) are anticipated to be human carcinogens based on animal experiments that have generated sufficient evidence of carcinogenicity [5]. Many cases of human aplastic anemia, leukemia, and lung cancer have also been reported in association with HCH exposure. Prenatal exposure to HCH has been implicated in causing thyroid dysfunction in children [6]. Transplacental transfer of OCPs,

References

[1]  P. C. Abhilash and N. Singh, “Pesticide use and application: an Indian scenario,” Journal of Hazardous Materials, vol. 165, no. 1–3, pp. 1–12, 2009.
[2]  K. Kannan, S. Tanabe, and R. Tatsukawa, “Geographical distribution and accumulation features of organochlorine residues in fish in tropical Asia and Oceania,” Environmental Science and Technology, vol. 29, no. 10, pp. 2673–2683, 1995.
[3]  P. Shegunova, J. Klánová, and I. Holoubek, “Residues of organochlorinated pesticides in soils from the Czech Republic,” Environmental Pollution, vol. 146, no. 1, pp. 257–261, 2007.
[4]  M. K. J. Siddiqui, S. Srivastava, S. P. Srivastava, P. K. Mehrotra, N. Mathur, and I. Tandon, “Persistent chlorinated pesticides and intra-uterine foetal growth retardation: a possible association,” International Archives of Occupational and Environmental Health, vol. 76, no. 1, pp. 75–80, 2003.
[5]  NTP, Report on Carcinogens, Department of Health and Human Services, Public Health Service, National Toxicology Program, Research Triangle Park, NC, USA, 12th edition, 2011.
[6]  M. álvarez-Pedrerol, N. Ribas-Fitó, M. Torrent et al., “Thyroid disruption at birth due to prenatal exposure to β-hexachlorocyclohexane,” Environment International, vol. 34, no. 6, pp. 737–740, 2008.
[7]  P. Dewan, V. Jain, P. Gupta, and B. D. Banerjee, “Organochlorine pesticide residues in maternal blood, cord blood, placenta, and breast milk and their relation to birth size,” Chemosphere, vol. 90, no. 5, pp. 1704–1710, 2013.
[8]  X. Wang, D. Wang, X. Qin, and X. Xu, “Residues of organochlorine pesticides in surface soils from college school yards in Beijing, China,” Journal of Environmental Sciences, vol. 20, no. 9, pp. 1090–1096, 2008.
[9]  P. C. Abhilash and N. Singh, “Pesticide use and application: an Indian scenario,” Journal of Hazardous Materials, vol. 165, pp. 1–12, 2009.
[10]  L. Fleming, J. B. Mann, J. Bean, T. Briggle, and J. R. Sanchez-Ramos, “Parkinson's disease and brain levels of organochlorine pesticides,” Annals of Neurology, vol. 36, no. 1, pp. 100–103, 1994.
[11]  F. M. Corrigan, L. Murray, C. L. Wyatt, and R. F. Shore, “Diorthosubstituted polychlorinated biphenyls in caudate nucleus in Parkinson's disease,” Experimental Neurology, vol. 150, no. 2, pp. 339–342, 1998.
[12]  J. R. Richardson, S. L. Shalat, B. Buckley et al., “Elevated serum pesticide levels and risk of Parkinson disease,” Archives of Neurology, vol. 66, no. 7, pp. 870–875, 2009.
[13]  E. R. Boersma and C. I. Lanting, “Environmental exposure to polychlorinated biphenyls (PCBs) and dioxins: consequences for longterm neurological and cognitive development of the child lactation,” Advances in Experimental Medicine and Biology, vol. 478, pp. 271–287, 2000.
[14]  B. C. Gladen, W. J. Rogan, P. Hardy, J. Thullen, J. Tingelstad, and M. Tully, “Development after exposure to polychlorinated biphenyls and dichlorodiphenyl dichloroethene transplacentally and through human milk,” Journal of Pediatrics, vol. 113, no. 6, pp. 991–995, 1988.
[15]  W. J. Rogan and B. C. Gladen, “PCBs, DDE, and child development at 18 and 24 months,” Annals of Epidemiology, vol. 1, no. 5, pp. 407–413, 1991.
[16]  C. Koopman-Esseboom, N. Weisglas-Kuperus, M. A. J. De Ridder, C. G. Van Der Paauw, L. G. M. T. Tuinstra, and P. J. J. Sauer, “Effects of polychlorinated biphenyl/dioxin exposure and feeding type on infant? mental and psychomotor development,” Pediatrics, vol. 97, no. 5, pp. 700–706, 1996.
[17]  B. E. Fishman and G. Gianutsos, “CNS biochemical and pharmacological effects of the isomers of hexachlorocyclohexane (lindane) in the mouse,” Toxicology and Applied Pharmacology, vol. 93, no. 1, pp. 146–153, 1988.
[18]  M. E. Gilbert and C. M. Mack, “Seizure thresholds in kindled animals are reduced by the pesticides lindane and endosulfan,” Neurotoxicology and Teratology, vol. 17, no. 2, pp. 143–150, 1995.
[19]  B. Bush, J. Snow, and R. Koblintz, “Polychlorobiphenyl (PCB) congeners, p,p'-DDE, and hexachlorobenzene in maternal and fetal cord blood from mothers in upstate New York,” Archives of Environmental Contamination and Toxicology, vol. 13, no. 5, pp. 517–527, 1984.
[20]  D. Mishra and H. P. Singh, “Kuppuswamy's socioeconomic status scale—a revision,” Indian Journal of Pediatrics, vol. 70, no. 3, pp. 273–274, 2003.
[21]  J. Tattersall, “Seizure activity post organophosphate exposure,” Frontiers in Bioscience, vol. 14, no. 10, pp. 3688–3711, 2009.
[22]  D. Vucevi?, D. Hrnci?, T. Radosavljevi?, et al., “Correlation between electrocorticographic and motor phenomena in lindane-induced experimental epilepsy in rats,” Canadian Journal of Physiology and Pharmacology, vol. 86, pp. 173–179, 2008.
[23]  L. G. Stark, R. M. Joy, and M. A. Hollinger, “Effects of two isomers of hexachlorocyclohexane (HCH) on cortical β-adrenoceptors in rat brain,” Experimental Neurology, vol. 98, no. 2, pp. 276–284, 1987.
[24]  B. E. Fishman and G. Gianutsos, “Opposite effects of different hexachlorocyclohexane (lindane) isomers on cerebellar cyclic GMP: relation of cyclic GMP accumulation to seizure activity,” Life Sciences, vol. 41, no. 14, pp. 1703–1709, 1987.
[25]  Lindane, 2012, http://www.fda.gov/downloads/Drugs/DrugSafety/UCM133687.
[26]  World Health Organization, The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification, 2009.
[27]  S. Kutluhan, G. Akhan, F. Gultekin, and E. Kurdoglu, “Three cases of recurrent epileptic seizures caused by Endosulfan,” Neurology India, vol. 51, no. 1, pp. 102–103, 2003.
[28]  M. A. Matin, F. N. Jaffery, and R. A. Siddiqui, “A possible neurochemical basis of the central stimulatory effects of pp'DDT,” Journal of Neurochemistry, vol. 36, no. 3, pp. 1000–1005, 1981.
[29]  T. E. Albertson, R. M. Joy, and L. G. Stark, “Chlorinated hydrocarbon pesticides and amygdaloid kindling,” Neurobehavioral Toxicology and Teratology, vol. 7, no. 3, pp. 233–237, 1985.
[30]  V. L. Castro and J. Palermo-Neto, “Effects of long-term aldrin administration on seizure susceptibility of rats,” Pharmacology & Toxicology, vol. 65, pp. 204–208, 1989.
[31]  A. Kumar, P. Dayal, G. Shukla, G. Singh, and P. E. Joseph, “DDT and HCH residue load in mother's breast milk: a survey of lactating mother's from remote villages in Agra region,” Environment International, vol. 32, pp. 248–251, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133