全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Transthoracic Echocardiography in Children and Young Adults with Congenital Heart Disease

DOI: 10.5402/2012/753481

Full-Text   Cite this paper   Add to My Lib

Abstract:

Transthoracic echocardiography (TTE) is the first-line tool for diagnosis and followup of pediatric and young adult patients with congenital heart disease (CHD). Appropriate use of TTE can reduce the need for more invasive modalities, such as cardiac catheterization and cardiac magnetic resonance imaging. New echocardiographic techniques have emerged more recently: tissue Doppler imaging, tissue tracking (strain and strain rate), vector velocity imaging (VVI), myocardial performance index, myocardial acceleration during isovolumic acceleration (IVA), the ratio of systolic to diastolic duration (S/D ratio), and two dimensional measurements of systolic right ventricular (RV) function (e.g., tricuspid annular plane systolic excursion, TAPSE). These may become valuable indicators of ventricular performance, compliance, and disease progression. In addition, three-dimensional (3D) echocardiography when performed for the assessment of valvular function, device position, and ventricular volumes is being integrated into routine clinical care. In this paper, the potential use and limitations of these new echocardiographic techniques in patients with CHD are discussed. A particular focus is on the echocardiographic assessment of right ventricular (RV) function in conditions associated with increased right ventricular volume (e.g., pulmonary regurgitation after tetralogy of Fallot repair) or pressure (e.g., pulmonary hypertension) in children and young adults. 1. Introduction Echocardiography has become the most important and routinely applied noninvasive imaging technique for the diagnosis and followup of patients with congenital heart disease (CHD). Cross-sectional Doppler echocardiography allows a detailed description of cardiovascular anatomy, ventricular, and valvular function. The diagnostic accuracy for describing cardiac morphology is very high, with a reported incidence of less than 100 errors in more than 50.000 echocardiograms [1]. Most functional variables used in echocardiography were developed and validated for the assessment of the normal, systemic, morphologically left ventricle (LV). The heterogeneity of CHD, anatomic normal variants, effects of the child’s growth, and interstudy variability of hemodynamics complicate the proper interpretation of many functional variables. For the LV, adult techniques are often extrapolated to pediatrics without comprehensive validation in a large pediatric cohort or even blinded prospective studies. For the RV, qualitative (subjective) assessment is the technique used routinely in most laboratories (eye balling).

References

[1]  O. J. Benavidez, K. Gauvreau, K. J. Jenkins, and T. Geva, “Diagnostic errors in pediatric echocardiography: development of taxonomy and identification of risk factors,” Circulation, vol. 117, no. 23, pp. 2995–3001, 2008.
[2]  F. Sheehan and A. Redington, “The right ventricle: anatomy, physiology and clinical imaging,” Heart, vol. 94, no. 11, pp. 1510–1515, 2008.
[3]  A. N. Redington, “Physiopathology of right ventricular failure,” Seminars in Thoracic and Cardiovascular Surgery. Pediatric Cardiac Surgery Annual, pp. 3–10, 2006.
[4]  P. P. Sengupta, J. Korinek, M. Belohlavek et al., “Left ventricular structure and function. Basic science for cardiac imaging,” Journal of the American College of Cardiology, vol. 48, no. 10, pp. 1988–2001, 2006.
[5]  G. R. Sutherland, M. J. Stewart, K. W. Groundstroem et al., “Color Doppler myocardial imaging: a new technique for the assessment of myocardial function,” Journal of the American Society of Echocardiography, vol. 7, no. 5, pp. 441–458, 1994.
[6]  B. W. Eidem, C. J. McMahon, R. R. Cohen et al., “Impact of cardiac growth on doppler tissue imaging velocities: a study in healthy children,” Journal of the American Society of Echocardiography, vol. 17, no. 3, pp. 212–221, 2004.
[7]  D. Vinereanu, A. A. Ionescu, and A. G. Fraser, “Assessment of left ventricular long axis contraction can detect early myocardial dysfunction in asymptomatic patients with severe aortic regurgitation,” Heart, vol. 85, no. 1, pp. 30–36, 2001.
[8]  F. Weidemann, S. Herrmann, S. St?rk et al., “Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis,” Circulation, vol. 120, no. 7, pp. 577–584, 2009.
[9]  P. Kiraly, L. Kapusta, J. M. Thijssen, and O. Dani?ls, “Left ventricular myocardial function in congenital valvar aortic stenosis assessed by ultrasound tissue-velocity and strain-rate techniques,” Ultrasound in Medicine and Biology, vol. 29, no. 4, pp. 615–620, 2003.
[10]  A. Wahl, F. Praz, M. Schwerzmann et al., “Assessment of right ventricular systolic function: comparison between cardiac magnetic resonance derived ejection fraction and pulsed-wave tissue Doppler imaging of the tricuspid annulus,” International Journal of Cardiology, vol. 151, no. 1, pp. 58–62, 2011.
[11]  B. Eyskens, J. Ganame, P. Claus, D. Boshoff, M. Gewillig, and L. Mertens, “Ultrasonic strain rate and strain imaging of the right ventricle in children before and after percutaneous closure of an atrial septal defect,” Journal of the American Society of Echocardiography, vol. 19, no. 8, pp. 994–1000, 2006.
[12]  M. Vogel, J. Sponring, S. Cullen, J. E. Deanfield, and A. N. Redington, “Regional wall motion and abnormalities of electrical depolarization and repolarization in patients after surgical repair of tetralogy of fallot,” Circulation, vol. 103, no. 12, pp. 1669–1673, 2001.
[13]  P. C. Frommelt, D. C. Sheridan, K. A. Mussatto et al., “Effect of shunt type on echocardiographic indices after initial palliations for hypoplastic left heart syndrome: blalock-taussig shunt versus right ventricle-pulmonary artery conduit,” Journal of the American Society of Echocardiography, vol. 20, no. 12, pp. 1364–1373, 2007.
[14]  M. K. Friedberg, N. H. Silverman, A. M. Dubin, and D. N. Rosenthal, “Mechanical dyssynchrony in children with systolic dysfunction secondary to cardiomyopathy: a doppler tissue and vector velocity imaging study,” Journal of the American Society of Echocardiography, vol. 20, no. 6, pp. 756–763, 2007.
[15]  F. Labombarda, J. Blanc, A. Pellissier et al., “Health-e-Child Project: mechanical dyssynchrony in children with dilated cardiomyopathy,” Journal of the American Society of Echocardiography, vol. 22, no. 11, pp. 1289–1295, 2009.
[16]  J. Janou?ek, R. A. Gebauer, H. Abdul-Khaliq et al., “Cardiac resynchronisation therapy in paediatric and congenital heart disease: differential effects in various anatomical and functional substrates,” Heart, vol. 95, no. 14, pp. 1165–1171, 2009.
[17]  K. Mori, R. Nakagawa, M. Nii et al., “Pulsed wave Doppler tissue echocardiography assessment of the long axis function of the right and left ventricles during the early neonatal period,” Heart, vol. 90, no. 2, pp. 175–180, 2004.
[18]  T. Kukulski, L. Hübbert, M. Arnold, B. Wranne, L. Hatle, and G. R. Sutherland, “Normal regional right ventricular function and its change with age: a Doppler Myocardial Imaging study,” Journal of the American Society of Echocardiography, vol. 13, no. 3, pp. 194–204, 2000.
[19]  C. Tei, L. H. Ling, D. O. Hodge et al., “New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function—a study in normals and dilated cardiomyopathy,” Journal of Cardiology, vol. 26, no. 6, pp. 357–366, 1995.
[20]  B. W. Eidem, P. W. O'Leary, C. Tei, and J. B. Seward, “Usefulness of the myocardial performance index for assessing right ventricular function in congenital heart disease,” American Journal of Cardiology, vol. 86, no. 6, pp. 654–658, 2000.
[21]  M. Murase, A. Ishida, and T. Morisawa, “Left and right ventricular myocardial performance index (Tei index) in very-low-birth-weight infants,” Pediatric Cardiology, vol. 30, no. 7, pp. 928–935, 2009.
[22]  M. Matter, H. Abdel-Hady, G. Attia, M. Hafez, W. Seliem, and M. Al-Arman, “Myocardial performance in asphyxiated full-term infants assessed by Doppler tissue imaging,” Pediatric Cardiology, vol. 31, no. 5, pp. 634–642, 2010.
[23]  C. Petko, L. L. Minich, M. D. Everitt, R. Holubkov, R. E. Shaddy, and L. Y. Tani, “Echocardiographic evaluation of children with systemic ventricular dysfunction treated with carvedilol,” Pediatric Cardiology, vol. 31, no. 6, pp. 780–784, 2010.
[24]  T. Tekten, A. O. Onbasili, C. Ceyhan, S. ünal, and B. Discigil, “Novel approach to measure myocardial performance index: pulsed-wave tissue Doppler echocardiography,” Echocardiography, vol. 20, no. 6, pp. 503–510, 2003.
[25]  K. Yasuoka, K. Harada, M. Toyono, M. Tamura, and F. Yamamoto, “Tei index determined by tissue doppler imaging in patients with pulmonary regurgitation after repair of tetralogy of fallot,” Pediatric Cardiology, vol. 25, no. 2, pp. 131–136, 2004.
[26]  M. C. Vonk, M. H. Sander, F. H. J. van den Hoogen, P. L. C. M. van Riel, F. W. A. Verheugt, and A. P. J. van Dijk, “Right ventricle Tei-index: a tool to increase the accuracy of non-invasive detection of pulmonary arterial hypertension in connective tissue diseases,” European Journal of Echocardiography, vol. 8, no. 5, pp. 317–321, 2007.
[27]  D. A. Roberson and W. Cui, “Right ventricular tei index in children: effect of method, age, body surface area, and heart rate,” Journal of the American Society of Echocardiography, vol. 20, no. 6, pp. 764–770, 2007.
[28]  M. M. H. Cheung, J. F. Smallhorn, A. N. Redington, and M. Vogel, “The effects of changes in loading conditions and modulation of inotropic state on the myocardial performance index: comparison with conductance catheter measurements,” European Heart Journal, vol. 25, no. 24, pp. 2238–2242, 2004.
[29]  M. Schwerzmann, A. M. Samman, O. Salehian et al., “Comparison of echocardiographic and cardiac magnetic resonance imaging for assessing right ventricular function in adults with repaired tetralogy of fallot,” American Journal of Cardiology, vol. 99, no. 11, pp. 1593–1597, 2007.
[30]  M. Vogel, G. Derrick, P. A. White et al., “Systemic ventricular function in patients with transposition of the great arteries after atrial repair: a tissue doppler and conductance catheter study,” Journal of the American College of Cardiology, vol. 43, no. 1, pp. 100–106, 2004.
[31]  M. Vogel, M. R. Schmidt, S. B. Kristiansen et al., “Validation of myocardial acceleration during isovolumic contraction as a novel noninvasive index of right ventricular contractility: comparison with ventricular pressure-volume relations in an animal model,” Circulation, vol. 105, no. 14, pp. 1693–1699, 2002.
[32]  L. B. Pauliks, M. Vogel, C. F. M?dler et al., “Regional response of myocardial acceleration during isovolumic contraction during dobutamine stress echocardiography: a color tissue Doppler study and comparison with angiocardiographic findings,” Echocardiography, vol. 22, no. 10, pp. 797–808, 2005.
[33]  M. Vogel, M. M. H. Cheung, J. Li et al., “Noninvasive assessment of left ventricular force-frequency relationships using tissue Doppler-derived isovolumic acceleration validation in an animal model,” Circulation, vol. 107, no. 12, pp. 1647–1652, 2003.
[34]  Y. Tayyareci, Y. Nisanci, B. Umman et al., “Early detection of right ventricular systolic dysfunction by using myocardial acceleration during isovolumic contraction in patients with mitral stenosis,” European Journal of Echocardiography, vol. 9, no. 4, pp. 516–521, 2008.
[35]  L. B. Pauliks, B. A. Pietra, C. G. DeGroff et al., “Non-invasive detection of acute allograft rejection in children by tissue Doppler imaging: myocardial velocities and myocardial acceleration during isovolumic contraction,” Journal of Heart and Lung Transplantation, vol. 24, no. 7, pp. S239–S248, 2005.
[36]  M. M. H. Cheung, J. F. Smallhorn, B. W. McCrindle, G. S. Van Arsdell, and A. N. Redington, “Non-invasive assessment of ventricular force-frequency relations in the univentricular circulation by tissue Doppler echocardiography: a novel method of assessing myocardial performance in congenital heart disease,” Heart, vol. 91, no. 10, pp. 1338–1342, 2005.
[37]  B. Eyskens, F. Weidemann, M. Kowalski et al., “Regional right and left ventricular function after the Senning operation: an ultrasonic study of strain rate and strain,” Cardiology in the young, vol. 14, no. 3, pp. 255–264, 2004.
[38]  J. Ganame, P. Claus, B. Eyskens et al., “Acute cardiac functional and morphological changes after anthracycline infusions in children,” American Journal of Cardiology, vol. 99, no. 7, pp. 974–977, 2007.
[39]  N. Giatrakos, M. Kinali, D. Stephens, D. Dawson, F. Muntoni, and P. Nihoyannopoulos, “Cardiac tissue velocities and strain rate in the early detection of myocardial dysfunction of asymptomatic boys with Duchenne's muscular dystrophy: relationship to clinical outcome,” Heart, vol. 92, no. 6, pp. 840–842, 2006.
[40]  F. Weidemann, B. Eyskens, F. Jamal et al., “Quantification of regional left and right ventricular radial and longitudinal function in healthy children using ultrasound-based strain rate and strain imaging,” Journal of the American Society of Echocardiography, vol. 15, no. 1, pp. 20–28, 2002.
[41]  S. Joshi, J. M. Edwards, D. G. Wilson, J. K. Wong, S. Kotecha, and A. G. Fraser, “Reproducibility of myocardial velocity and deformation imaging in term and preterm infants,” European Journal of Echocardiography, vol. 11, no. 1, pp. 44–50, 2010.
[42]  J. L. B. Pena, M. G. da Silva, S. C. C. Faria et al., “Quantification of regional left and right ventricular deformation indices in healthy neonates by using strain rate and strain imaging,” Journal of the American Society of Echocardiography, vol. 22, no. 4, pp. 369–375, 2009.
[43]  E. Nestaas, A. St?ylen, L. Brunvand, and D. Fugelseth, “Tissue doppler derived longitudinal strain and strain rate during the first 3 days of life in healthy term neonates,” Pediatric Research, vol. 65, no. 3, pp. 357–362, 2009.
[44]  E. Nestaas, A. Stylen, L. Brunvand, and D. Fugelseth, “Longitudinal strain and strain rate by tissue Doppler are more sensitive indices than fractional shortening for assessing the reduced myocardial function in asphyxiated neonates,” Cardiology in the Young, vol. 21, no. 1, pp. 1–7, 2011.
[45]  L. P. Koopman, C. Slorach, W. Hui et al., “Comparison between different speckle tracking and color tissue doppler techniques to measure global and regional myocardial deformation in children,” Journal of the American Society of Echocardiography, vol. 23, no. 9, pp. 919–928, 2010.
[46]  J. Ganame, L. Mertens, B. W. Eidem et al., “Regional myocardial deformation in children with hypertrophic cardiomyopathy: morphological and clinical correlations,” European Heart Journal, vol. 28, no. 23, pp. 2886–2894, 2007.
[47]  C. Y. Ho, C. Carlsen, J. J. Thune et al., “Echocardiographic strain imaging to assess early and late consequences of sarcomere mutations in hypertrophic cardiomyopathy,” Circulation, vol. 2, no. 4, pp. 314–321, 2009.
[48]  L. Mertens, J. Ganame, P. Claus et al., “Early regional myocardial dysfunction in young patients with duchenne muscular dystrophy,” Journal of the American Society of Echocardiography, vol. 21, no. 9, pp. 1049–1054, 2008.
[49]  J. Ganame, P. Claus, A. Uyttebroeck et al., “Myocardial dysfunction late After low-dose anthracycline treatment in asymptomatic pediatric patients,” Journal of the American Society of Echocardiography, vol. 20, no. 12, pp. 1351–1358, 2007.
[50]  B. Eyskens, S. C. Brown, P. Claus et al., “The influence of pulmonary regurgitation on regional right ventricular function in children after surgical repair of tetralogy of Fallot,” European Journal of Echocardiography, vol. 11, no. 4, pp. 341–345, 2010.
[51]  J. M. Bos, D. J. Hagler, S. Silvilairat et al., “Right ventricular function in asymptomatic individuals with a systemic right ventricle,” Journal of the American Society of Echocardiography, vol. 19, no. 8, pp. 1033–1037, 2006.
[52]  B. H. Amundsen, T. Helle-Valle, T. Edvardsen et al., “Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging,” Journal of the American College of Cardiology, vol. 47, no. 4, pp. 789–793, 2006.
[53]  A. J. Teske, B. W. L. De Boeck, M. Olimulder, N. H. Prakken, P. A. F. Doevendans, and M. J. Cramer, “Echocardiographic assessment of regional right ventricular function: a head-to-head comparison between 2-dimensional and tissue doppler-derived strain analysis,” Journal of the American Society of Echocardiography, vol. 21, no. 3, pp. 275–283, 2008.
[54]  M. Leitman, P. Lysyansky, S. Sidenko et al., “Two-dimensional strain-A novel software for real-time quantitative echocardiographic assessment of myocardial function,” Journal of the American Society of Echocardiography, vol. 17, no. 10, pp. 1021–1029, 2004.
[55]  M. Kowalski, E. Kowalik, K. Kotliński et al., “Regional left ventricular myocardial shortening in normotensive patients late after aortic coarctation repair—normal or impaired?” Ultrasound in Medicine and Biology, vol. 35, no. 12, pp. 1947–1952, 2009.
[56]  K. T. Laser, N. A. Haas, N. Jansen et al., “Is torsion a suitable echocardiographic parameter to detect acute changes in left ventricular afterload in children?” Journal of the American Society of Echocardiography, vol. 22, no. 10, pp. 1121–1128, 2009.
[57]  A. Dragulescu and L. L. Mertens, “Developments in echocardiographic techniques for the evaluation of ventricular function in children,” Archives of Cardiovascular Diseases, vol. 103, no. 11-12, pp. 603–614, 2010.
[58]  L. Dong, F. Zhang, X. Shu et al., “Left ventricular torsional deformation in patients undergoing transcatheter closure of secundum atrial septal defect,” International Journal of Cardiovascular Imaging, vol. 25, no. 5, pp. 479–486, 2009.
[59]  E. W. Y. Cheung, X. C. Liang, W. W. M. Lam, and Y. F. Cheung, “Impact of right ventricular dilation on left ventricular myocardial deformation in patients after surgical repair of tetralogy of fallot,” American Journal of Cardiology, vol. 104, no. 9, pp. 1264–1270, 2009.
[60]  S. Kutty, S. L. Deatsman, D. Russell, M. L. Nugent, P. M. Simpson, and P. C. Frommelt, “Pulmonary valve replacement improves but does not normalize right ventricular mechanics in repaired congenital heart disease: a comparative assessment using velocity vector imaging,” Journal of the American Society of Echocardiography, vol. 21, no. 11, pp. 1216–1221, 2008.
[61]  N. Moiduddin, K. Asoh, C. Slorach, L. N. Benson, and M. K. Friedberg, “Effect of transcatheter pulmonary valve implantation on short-term right ventricular function as determined by two-dimensional speckle tracking strain and strain rate imaging,” American Journal of Cardiology, vol. 104, no. 6, pp. 862–867, 2009.
[62]  S. Giusca, V. Dambrauskaite, C. Scheurwegs et al., “Deformation imaging describes right ventricular function better than longitudinal displacement of the tricuspid ring,” Heart, vol. 96, no. 4, pp. 281–288, 2010.
[63]  S. Puwanant, M. Park, Z. B. Popovi? et al., “Ventricular geometry, strain, and rotational mechanics in pulmonary hypertension,” Circulation, vol. 121, no. 2, pp. 259–266, 2010.
[64]  M. Kittipovanonth, D. Bellavia, K. Chandrasekaran, H. R. Villarraga, T. P. Abraham, and P. A. Pellikka, “Doppler myocardial imaging for early detection of right ventricular dysfunction in patients with pulmonary hypertension,” Journal of the American Society of Echocardiography, vol. 21, no. 9, pp. 1035–1041, 2008.
[65]  M. Becker, E. Bilke, H. Kühl et al., “Analysis of myocardial deformation based on pixel tracking in two dimensional echocardiographic images enables quantitative assessment of regional left ventricular function,” Heart, vol. 92, no. 8, pp. 1102–1108, 2006.
[66]  G. Y. Cho, J. Chan, R. Leano, M. Strudwick, and T. H. Marwick, “Comparison of two-dimensional speckle and tissue velocity based strain and validation with harmonic phase magnetic resonance imaging,” American Journal of Cardiology, vol. 97, no. 11, pp. 1661–1666, 2006.
[67]  L. Hanekom, G. Y. Cho, R. Leano, L. Jeffriess, and T. H. Marwick, “Comparison of two-dimensional speckle and tissue Doppler strain measurement during dobutamine stress echocardiography: an angiographic correlation,” European Heart Journal, vol. 28, no. 14, pp. 1765–1772, 2007.
[68]  C. B. Ingul, H. Torp, S. A. Aase, S. Berg, A. Stoylen, and S. A. Slordahl, “Automated analysis of strain rate and strain: feasibility and clinical implications,” Journal of the American Society of Echocardiography, vol. 18, no. 5, pp. 411–418, 2005.
[69]  W. Hui, C. Slorach, T. J. Bradley, E. T. Jaeggi, L. Mertens, and M. K. Friedberg, “Measurement of right ventricular mechanical synchrony in children using tissue doppler velocity and two-dimensional strain imaging,” Journal of the American Society of Echocardiography, vol. 23, no. 12, pp. 1289–1296, 2010.
[70]  P. Niemann, H. Houle, L. Pinho, C. Broberg, M. Jerosch-Herold, and D. J. Sahn, “An offline analysis method for determining left ventricular myocardial velocity, strain, and twist from gradient-echo cine MRI images,” Journal of Cardiovascular Magnetic Resonance, vol. 9, pp. 276–277, 2007.
[71]  U. T. Truong, X. Li, C. S. Broberg et al., “Significance of mechanical alterations in single ventricle patients on twisting and circumferential strain as determined by analysis of strain from gradient cine magnetic resonance imaging sequences,” American Journal of Cardiology, vol. 105, no. 10, pp. 1465–1469, 2010.
[72]  M. Ortega, J. K. Triedman, T. Geva, and D. M. Harrild, “Relation of Left ventricular dyssynchrony measured by cardiac magnetic resonance tissue tracking in repaired tetralogy of fallot to ventricular tachycardia and death,” American Journal of Cardiology, vol. 107, no. 10, pp. 1535–1540, 2011.
[73]  K. N. Hor, W. M. Gottliebson, C. Carson et al., “Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis,” Journal of the American College of Cardiology, vol. 3, no. 2, pp. 144–151, 2010.
[74]  J. M. Simpson, “Real-time three-dimensional echocardiography of congenital heart disease using a high frequency paediatric matrix transducer,” European Journal of Echocardiography, vol. 9, no. 2, pp. 222–224, 2008.
[75]  K. Takahashi, A. Inage, I. M. Rebeyka et al., “Real-time 3-dimensional echocardiography provides new insight into mechanisms of tricuspid valve regurgitation in patients with hypoplastic left heart syndrome,” Circulation, vol. 120, no. 12, pp. 1091–1098, 2009.
[76]  A. Dragulescu, L. Grosse-Wortmann, C. Fackoury et al., “Echocardiographic assessment of right ventricular volumes after surgical repair of tetralogy of fallot: clinical validation of a new echocardiographic method,” Journal of the American Society of Echocardiography, vol. 24, no. 11, pp. 1191–1198, 2011.
[77]  P. S. Niemann, L. Pinho, T. Balbach et al., “Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-tesla magnetic resonance imaging,” Journal of the American College of Cardiology, vol. 50, no. 17, pp. 1668–1676, 2007.
[78]  G. Leibundgut, A. Rohner, L. Grize et al., “Dynamic assessment of right ventricular volumes and function by real-time three-dimensional echocardiography: a comparison study with magnetic resonance imaging in 100 adult patients,” Journal of the American Society of Echocardiography, vol. 23, no. 2, pp. 116–126, 2010.
[79]  H. B. van der Zwaan, W. A. Helbing, J. S. McGhie et al., “Clinical value of real-time three-dimensional echocardiography for right ventricular quantification in congenital heart disease: validation with cardiac magnetic resonance imaging,” Journal of the American Society of Echocardiography, vol. 23, no. 2, pp. 134–140, 2010.
[80]  N. S. Khoo, A. Young, C. Occleshaw, B. Cowan, I. S. L. Zeng, and T. L. Gentles, “Assessments of right ventricular volume and function using three-dimensional echocardiography in older children and adults with congenital heart disease: comparison with cardiac magnetic resonance imaging,” Journal of the American Society of Echocardiography, vol. 22, no. 11, pp. 1279–1288, 2009.
[81]  J. Grewal, D. Majdalany, I. Syed, P. Pellikka, and C. A. Warnes, “Three-dimensional echocardiographic assessment of right ventricular volume and function in adult patients with congenital heart disease: comparison with magnetic resonance imaging,” Journal of the American Society of Echocardiography, vol. 23, no. 2, pp. 127–133, 2010.
[82]  A. E. van den Bosch, D. J. Ten Harkel, J. S. McGhie et al., “Characterization of atrial septal defect assessed by real-time 3-dimensional echocardiography,” Journal of the American Society of Echocardiography, vol. 19, no. 6, pp. 815–821, 2006.
[83]  A. E. Van Den Bosch, D. J. Ten Harkel, J. S. McGhie et al., “Feasibility and accuracy of real-time 3-dimensional echocardiographic assessment of ventricular septal defects,” Journal of the American Society of Echocardiography, vol. 19, no. 1, pp. 7–13, 2006.
[84]  K. Takahashi, V. Guerra, K. S. Roman, M. Nii, A. Redington, and J. F. Smallhorn, “Three-dimensional echocardiography improves the understanding of the mechanisms and site of left atrioventricular valve regurgitation in atrioventricular septal defect,” Journal of the American Society of Echocardiography, vol. 19, no. 12, pp. 1502–1510, 2006.
[85]  J. Grapsa, D. P. O'Regan, H. Pavlopoulos, G. Durighel, D. Dawson, and P. Nihoyannopoulos, “Right ventricular remodelling in pulmonary arterial hypertension with three-dimensional echocardiography: comparison with cardiac magnetic resonance imaging,” European Journal of Echocardiography, vol. 11, no. 1, pp. 64–73, 2010.
[86]  X. Lu, V. Nadvoretskiy, L. Bu et al., “Accuracy and reproducibility of real-time three-dimensional echocardiography for assessment of right ventricular volumes and ejection fraction in children,” Journal of the American Society of Echocardiography, vol. 21, no. 1, pp. 84–89, 2008.
[87]  A. Grison, N. Maschietto, E. Reffo et al., “Three-dimensional echocardiographic evaluation of right ventricular volume and function in pediatric patients: validation of the technique,” Journal of the American Society of Echocardiography, vol. 20, no. 8, pp. 921–929, 2007.
[88]  J. Kjaergaard, J. Hastrup Svendsen, P. Sogaard et al., “Advanced quantitative echocardiography in arrhythmogenic right ventricular cardiomyopathy,” Journal of the American Society of Echocardiography, vol. 20, no. 1, pp. 27–35, 2007.
[89]  G. Tamborini, N. A. Marsan, P. Gripari et al., “Reference values for right ventricular volumes and ejection fraction with real-time three-dimensional echocardiography: evaluation in a large series of normal subjects,” Journal of the American Society of Echocardiography, vol. 23, no. 2, pp. 109–115, 2010.
[90]  H. B. Van Der Zwaan, M. L. Geleijnse, J. S. McGhie et al., “Right ventricular quantification in clinical practice: two-dimensional vs. three-dimensional echocardiography compared with cardiac magnetic resonance imaging,” European Journal of Echocardiography, vol. 12, no. 9, pp. 656–664, 2011.
[91]  M. K. Friedberg, X. Su, W. Tworetzky, B. D. Soriano, A. J. Powell, and G. R. Marx, “Validation of 3D echocardiographic assessment of left ventricular volumes, mass, and ejection fraction in neonates and infants with congenital heart disease a comparison study with cardiac MRI,” Circulation, vol. 3, no. 6, pp. 735–742, 2010.
[92]  B. D. Soriano, M. Hoch, A. Ithuralde et al., “Matrix-array 3-dimensional echocardiographic assessment of volumes, mass, and ejection fraction in young pediatric patients with a functional single ventricle: a comparison study with cardiac magnetic resonance,” Circulation, vol. 117, no. 14, pp. 1842–1848, 2008.
[93]  M. K. Friedberg and N. H. Silverman, “Cardiac ventricular diastolic and systolic duration in children with heart failure secondary to idiopathic dilated cardiomyopathy,” American Journal of Cardiology, vol. 97, no. 1, pp. 101–105, 2006.
[94]  M. K. Friedberg and N. H. Silverman, “The systolic to diastolic duration ratio in children with heart failure secondary to restrictive cardiomyopathy,” Journal of the American Society of Echocardiography, vol. 19, no. 11, pp. 1326–1331, 2006.
[95]  D. R. Patel, W. Cui, K. Gambetta, and D. A. Roberson, “A comparison of tei index versus systolic to diastolic ratio to detect left ventricular dysfunction in pediatric patients,” Journal of the American Society of Echocardiography, vol. 22, no. 2, pp. 152–158, 2009.
[96]  M. K. Friedberg and N. H. Silverman, “The systolic to diastolic duration ratio in children with hypoplastic left heart syndrome: a novel Doppler index of right ventricular function,” Journal of the American Society of Echocardiography, vol. 20, no. 6, pp. 749–755, 2007.
[97]  R. Sarnari, R. Y. Kamal, M. K. Friedberg, and N. H. Silverman, “Doppler assessment of the ratio of the systolic to diastolic duration in normal children: relation to heart rate, age and body surface area,” Journal of the American Society of Echocardiography, vol. 22, no. 8, pp. 928–932, 2009.
[98]  J. Alkon, T. Humpl, C. Manlhiot, B. W. McCrindle, J. T. Reyes, and M. K. Friedberg, “Usefulness of the right ventricular systolic to diastolic duration ratio to predict functional capacity and survival in children with pulmonary arterial hypertension,” American Journal of Cardiology, vol. 106, no. 3, pp. 430–436, 2010.
[99]  P. P. Sengupta, V. K. Krishnamoorthy, J. Korinek et al., “Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging,” Journal of the American Society of Echocardiography, vol. 20, no. 5, pp. 539–551, 2007.
[100]  D. Miller, M. G. Farah, A. Liner, K. Fox, M. Schluchter, and B. D. Hoit, “The relation between quantitative right ventricular ejection fraction and indices of tricuspid annular motion and myocardial performance,” Journal of the American Society of Echocardiography, vol. 17, no. 5, pp. 443–447, 2004.
[101]  J. Meluzín, L. ?pinarová, J. Bakala et al., “Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion. A new, rapid, and non-invasive method of evaluating right ventricular systolic function,” European Heart Journal, vol. 22, no. 4, pp. 340–348, 2001.
[102]  J. Meluzín, L. ?pinarová, L. Du?ek, J. Toman, P. Hude, and J. Krej?í, “Prognostic importance of the right ventricular function assessed by Doppler tissue imaging,” European Journal of Echocardiography, vol. 4, no. 4, pp. 262–271, 2003.
[103]  D. Tüller, M. Steiner, A. Wahl, M. Kabok, and C. Seiler, “Systolic right ventricular function assessment by pulsed wave tissue Doppler imaging of the tricuspid annulus,” Swiss Medical Weekly, vol. 135, no. 31-32, pp. 461–468, 2005.
[104]  N. Saxena, N. Rajagopalan, K. Edelman, and A. López-Candales, “Tricuspid annular systolic velocity: a useful measurement in determining right ventricular systolic function regardless of pulmonary artery pressures,” Echocardiography, vol. 23, no. 9, pp. 750–755, 2006.
[105]  M. Koestenberger, B. Nagel, W. Ravekes et al., “Reference values of tricuspid annular peak systolic velocity in healthy pediatric patients, calculation of Z score, and comparison to tricuspid annular plane systolic excursion,” American Journal of Cardiology, vol. 109, no. 1, pp. 116–121, 2012.
[106]  M. Koestenberger, W. Ravekes, A. D. Everett et al., “Right ventricular function in infants, children and adolescents: reference values of the Tricuspid Annular Plane Systolic Excursion (TAPSE) in 640 healthy patients and calculation of z score values,” Journal of the American Society of Echocardiography, vol. 22, no. 6, pp. 715–719, 2009.
[107]  B. A. Popescu, F. Antonini-Canterin, P. L. Temporelli et al., “Right ventricular functional recovery after acute myocardial infarction: relation with left ventricular function and interventricular septum motion. GISSI-3 echo substudy,” Heart, vol. 91, no. 4, pp. 484–488, 2005.
[108]  M. Koestenberger, B. Nagel, W. Ravekes et al., “Tricuspid annular plane systolic excursion and right ventricular ejection fraction in pediatric and adolescent patients with tetralogy of Fallot, patients with atrial septal defect, and age-matched normal subjects,” Clinical Research in Cardiology, vol. 100, no. 1, pp. 67–75, 2011.
[109]  M. Koestenberger, B. Nagel, W. Ravekes et al., “Systolic right ventricular function in pediatric and adolescent patients with tetralogy of Fallot: echocardiography versus magnetic resonance imaging,” Journal of the American Society of Echocardiography, vol. 24, no. 1, pp. 45–52, 2011.
[110]  B. Lamia, J. L. Teboul, X. Monnet, C. Richard, and D. Chemla, “Relationship between the tricuspid annular plane systolic excursion and right and left ventricular function in critically ill patients,” Intensive Care Medicine, vol. 33, no. 12, pp. 2143–2149, 2007.
[111]  L. Lopez, S. D. Colan, P. C. Frommelt et al., “Recommendations for quantification methods during the performance of a pediatric echocardiogram: a Report From the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council,” Journal of the American Society of Echocardiography, vol. 23, no. 5, pp. 465–495, 2010.
[112]  D. A. Roberson, W. Cui, Z. Chen, L. F. Madronero, and B. F. Cuneo, “Annular and septal Doppler tissue imaging in children: normal z-score tables and effects of age, heart rate, and body surface area,” Journal of the American Society of Echocardiography, vol. 20, no. 11, pp. 1276–1284, 2007.
[113]  P. R. Forfia, M. R. Fisher, S. C. Mathai et al., “Tricuspid annular displacement predicts survival in pulmonary hypertension,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 9, pp. 1034–1041, 2006.
[114]  S. G. Haworth and A. A. Hislop, “Treatment and survival in Children with pulmonary arterial hypertension: the UK Pulmonary Hypertension Service for Children 2001–2006,” Heart, vol. 95, no. 4, pp. 312–317, 2009.
[115]  A. Milan, C. Magnino, and F. Veglio, “Echocardiographic Indexes for the Non-Invasive Evaluation of Pulmonary Hemodynamics,” Journal of the American Society of Echocardiography, vol. 23, no. 3, pp. 225–239, 2010.
[116]  R. Rydman, M. S?derberg, F. Larsen, K. Caidahl, and M. Alam, “Echocardiographic evaluation of right ventricular function in patients with acute pulmonary embolism: a study using tricuspid annular motion,” Echocardiography, vol. 27, no. 3, pp. 286–293, 2010.
[117]  I. ?etin, K. Tokel, B. Varan, U. ?rün, and S. A?lamaci, “Evaluation of right ventricular function by using tissue doppler imaging in patients after repair of tetralogy of fallot,” Echocardiography, vol. 26, no. 8, pp. 950–957, 2009.
[118]  A. López-Candales, N. Rajagopalan, N. Saxena, B. Gulyasy, K. Edelman, and R. Bazaz, “Right ventricular systolic function is not the sole determinant of tricuspid annular motion,” American Journal of Cardiology, vol. 98, no. 7, pp. 973–977, 2006.
[119]  M. Koestenberger, B. Nagel, W. Ravekes et al., “Systolic right ventricular function in preterm and term neonates: reference values of the tricuspid annular plane systolic excursion (TAPSE) in 258 patients and calculation of z-score values,” Neonatology, vol. 100, no. 1, pp. 85–92, 2011.
[120]  M. Koestenberger, B. Nagel, W. Ravekes, et al., “Left ventricular long-axis function: Reference values of the mitral annular plane systolic excursion (MAPSE) in 558 healthy children and calculation of z-score values,” American Heart Journal. In press.
[121]  M. Koestenberger, B. Nagel, A. Avian et al., “Systolic right ventricular function in children and young adults with pulmonary artery hypertension secondary to congenital heart disease and tetralogy of Fallot: tricuspid annular plane systolic excursion (TAPSE) and magnetic resonance imaging data,” Congenital Heart Disease, vol. 7, no. 3, pp. 250–258, 2012.
[122]  T. Oosterhof, I. I. Tulevski, H. W. Vliegen, A. M. Spijkerboer, and B. J. M. Mulder, “Effects of volume and/or pressure overload secondary to congenital heart disease (tetralogy of Fallot or pulmonary stenosis) on right ventricular function using cardiovascular magnetic resonance and B-type natriuretic peptide levels,” American Journal of Cardiology, vol. 97, no. 7, pp. 1051–1055, 2006.
[123]  J. Kjaergaard, C. L. Petersen, A. Kjaer, B. K. Schaadt, J. K. Oh, and C. Hassager, “Evaluation of right ventricular volume and function by 2D and 3D echocardiography compared to MRI,” European Journal of Echocardiography, vol. 7, no. 6, pp. 430–438, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133