Minimal change disease constitutes a major cause of nephrotic syndrome. It is regarded as a non-immune-complex mediated primary glomerulopathy and pathogenetically is characterised by podocyte injury and effacement of foot processes; therefore, it is also classified as a type of podocytopathy. T cell dysfunction with increased levels of a soluble glomerular permeability factor has been proposed to play a major role in the pathogenesis of minimal change disease. It has been therefore suggested that a dysfunction of regulatory T cells, the orchestrators of immune homeostasis, could be implicated in perpetuating T cell activation in this condition. However, the actual contribution of regulatory T cell dysfunction in the immunopathogenesis of primary minimal change disease is still largely unclear. We here propose a theoretical model based on the available evidence. 1. Introduction The glomerulus is the functional unit of the kidney responsible for blood filtration, which is the first step in blood purification and the production of urine. Normal functioning of the glomerulus requires the integrity of all three major components of the glomerular filtration barrier, that is, endothelial cells, glomerular basement membrane (GBM), and the visceral epithelial cells or podocytes. Podocytes have cellular projections, or foot processes, which interdigitate with each other and wrap around the capillary loops, leaving spaces in between referred to as slit diaphragms. The slit diaphragms serve as a permeable selective barrier with sieving function allowing filtration of fluid and small solutes while preventing large-molecular-weight plasma components and anionic serum proteins like albumin from passing into the urine. Many glomerular disease processes cause damage and subsequent disruption to the glomerular filtration barrier, eventually leading to pathological glomerular permeability to proteins. If proteinuria exceeds 3.5?g/1.73?m2/day and is accompanied by hypoalbuminaemia, oedema, and/or hyperlipidaemia, the resultant clinical picture is referred to as nephrotic syndrome. Primary minimal change disease (MCD) is a distinct histopathological entity that typically presents with idiopathic nephrotic syndrome. But some patients may develop MCD secondary to use of nonsteroidal anti-inflammatory drugs or a lymphoproliferative disorder. Light microscopy in MCD typically reveals very minor changes such as podocyte enlargement or ectatic capillary loops (Figure 1). At times, diffuse mesangial hypercellularity can also occur. On immunofluorescence, no immunoglobulin
References
[1]
L. Barisoni, H. W. Schnaper, and J. B. Kopp, “A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases,” Clinical Journal of the American Society of Nephrology, vol. 2, no. 3, pp. 529–542, 2007.
[2]
R. J. Shalhoub, “Pathogenesis of lipoid nephrosis: a disorder of T cell function,” The Lancet, vol. 2, no. 7880, pp. 556–560, 1974.
[3]
S. Sakaguchi, N. Sakaguchi, M. Asano, M. Itoh, and M. Toda, “Immunologic self-tolerance maintained by activated T cells expressing IL- 2 receptor α-chains (CD25): breakdown of a single mechanism of self- tolerance causes various autoimmune diseases,” Journal of Immunology, vol. 155, no. 3, pp. 1151–1164, 1995.
[4]
S. Sakaguchi, T. Yamaguchi, T. Nomura, and M. Ono, “Regulatory T cells and immune tolerance,” Cell, vol. 133, no. 5, pp. 775–787, 2008.
[5]
C. L. Bennett, J. Christie, F. Ramsdell et al., “The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3,” Nature Genetics, vol. 27, no. 1, pp. 20–21, 2001.
[6]
K. Benz, M. Büttner, K. Dittrich, V. Campean, J. D?tsch, and K. Amann, “Characterisation of renal immune cell infiltrates in children with nephrotic syndrome,” Pediatric Nephrology, vol. 25, no. 7, pp. 1291–1298, 2010.
[7]
R. Bertelli, M. Bodria, M. Nobile et al., “Regulation of innate immunity by the nucleotide pathway in children with idiopathic nephrotic syndrome,” Clinical and Experimental Immunology, vol. 166, no. 1, pp. 55–63, 2011.
[8]
C. Araya, L. Diaz, C. Wasserfall et al., “T regulatory cell function in idiopathic minimal lesion nephrotic syndrome,” Pediatric Nephrology, vol. 24, no. 9, pp. 1691–1698, 2009.
[9]
L.-L. Liu, Y. Qin, J.-F. Cai et al., “Th17/Treg imbalance in adult patients with minimal change nephrotic syndrome,” Clinical Immunology, vol. 139, no. 3, pp. 314–320, 2011.
[10]
X. S. Shao, X. Q. Yang, X. D. Zhao et al., “The prevalence of Th17 cells and FOXP3 regulate T cells (Treg) in children with primary nephrotic syndrome,” Pediatric Nephrology, vol. 24, no. 9, pp. 1683–1690, 2009.
[11]
Y. Hashimura, K. Nozu, H. Kanegane et al., “Minimal change nephrotic syndrome associated with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome,” Pediatric Nephrology, vol. 24, no. 6, pp. 1181–1186, 2009.
[12]
M. Miyara, Y. Yoshioka, A. Kitoh et al., “Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor,” Immunity, vol. 30, no. 6, pp. 899–911, 2009.
[13]
D. J. Campbell and M. A. Koch, “Phenotypical and functional specialization of FOXP3+ regulatory T cells,” Nature Reviews Immunology, vol. 11, no. 2, pp. 119–130, 2011.
[14]
Y. Ding, J. Xu, and J. S. Bromberg, “Regulatory T cell migration during an immune response,” Trends in Immunology, vol. 33, no. 4, pp. 174–179, 2012.
[15]
Y. Liu, P. Zhang, J. Li, A. B. Kulkarni, S. Perruche, and W. Chen, “A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells,” Nature Immunology, vol. 9, no. 6, pp. 632–640, 2008.
[16]
J. L. Bautista, C.-W. J. Lio, S. K. Lathrop et al., “Intraclonal competition limits the fate determination of regulatory T cells in the thymus,” Nature Immunology, vol. 10, no. 6, pp. 610–617, 2009.
[17]
J. Huehn, K. Siegmund, J. C. U. Lehmann et al., “Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells,” The Journal of Experimental Medicine, vol. 199, no. 3, pp. 303–313, 2004.
[18]
C. Benoist and D. Mathis, “Treg cells, life history, and diversity,” Cold Spring Harbor Perspectives in Biology, vol. 4, no. 9, Article ID a007021, 2012.
[19]
J. A. Bluestone and H. Bour-Jordan, “Current and future immunomodulation strategies to restore tolerance in autoimmune diseases,” Cold Spring Harbor Perspectives in Biology, vol. 4, no. 11, Article ID a007542, 2012.
[20]
W. Chen, W. Jin, N. Hardegen et al., “Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3,” The Journal of Experimental Medicine, vol. 198, no. 12, pp. 1875–1886, 2003.
[21]
I. Apostolou and H. von Boehmer, “In vivo instruction of suppressor commitment in naive T cells,” The Journal of Experimental Medicine, vol. 199, no. 10, pp. 1401–1408, 2004.
[22]
M. A. Curotto de Lafaille, N. Kutchukhidze, S. Shen, Y. Ding, H. Yee, and J. J. Lafaille, “Adaptive Foxp3+ regulatory T cell-dependent and -independent control of allergic inflammation,” Immunity, vol. 29, no. 1, pp. 114–126, 2008.
[23]
M. Kleinewietfeld, F. Puentes, G. Borsellino, L. Battistini, O. R?tzschke, and K. Falk, “CCR6 expression defines regulatory effector/memory-like cells within the CD25+CD4+ T-cell subset,” Blood, vol. 105, no. 7, pp. 2877–2886, 2005.
[24]
S. Deaglio, K. M. Dwyer, W. Gao et al., “Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression,” The Journal of Experimental Medicine, vol. 204, no. 6, pp. 1257–1265, 2007.
[25]
G. Borsellino, M. Kleinewietfeld, D. di Mitri et al., “Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression,” Blood, vol. 110, no. 4, pp. 1225–1232, 2007.
[26]
F. Salcido-Ochoa, J. Tsang, P. Tam, K. Falk, and O. Rotzschke, “Regulatory T cells in transplantation: does extracellular adenosine triphosphate metabolism through CD39 play a crucial role?” Transplantation Reviews, vol. 24, no. 2, pp. 52–66, 2010.
[27]
A. M. Thornton and E. M. Shevach, “Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific,” Journal of Immunology, vol. 164, no. 1, pp. 183–190, 2000.
[28]
E. M. Shevach, “Mechanisms of Foxp3+ T regulatory cell-mediated suppression,” Immunity, vol. 30, no. 5, pp. 636–645, 2009.
[29]
E. Schnenberger, J. H. Ehrich, H. Haller, and M. Schiffer, “The podocyte as a direct target of immunosuppressive agents,” Nephrology Dialysis Transplantation, vol. 26, no. 1, pp. 18–24, 2011.
[30]
J. G. van den Berg, J. Aten, M. A. Chand et al., “Interleukin-4 and interleukin-13 act on glomerular visceral epithelial cells,” Journal of the American Society of Nephrology, vol. 11, no. 3, pp. 413–422, 2000.
[31]
E. H. Garin, P. F. Laflam, and K. Muffly, “Proteinuria and fusion of podocyte foot processes in rats after infusion of cytokine from patients with idiopathic minimal lesion nephrotic syndrome,” Nephron Experimental Nephrology, vol. 102, no. 3-4, pp. e105–e112, 2006.
[32]
M. Shimada, C. Araya, C. Rivard, T. Ishimoto, R. J. Johnson, and E. H. Garin, “Minimal change disease: a “two-hit” podocyte immune disorder?” Pediatric Nephrology, vol. 26, no. 4, pp. 645–649, 2011.
[33]
C. Gluhovschi, G. Gluhovschi, E. Potencz, et al., “What is the significance of HLA-DR antigen expression in the extraglomerular mesangium in glomerulonephritis?” Human Immunology, vol. 73, no. 11, pp. 1098–1101, 2012.
[34]
E. H. Garin, W. Mu, J. M. Arthur et al., “Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis,” Kidney International, vol. 78, no. 3, pp. 296–302, 2010.
[35]
E. H. Garin, L. N. Diaz, W. Mu et al., “Urinary CD80 excretion increases in idiopathic minimal-change disease,” Journal of the American Society of Nephrology, vol. 20, no. 2, pp. 260–266, 2009.
[36]
T. Ishimoto, G. Cara-Fuentes, H. Wang, et al., “Serum from minimal change patients in relapse increases CD80 expression in cultured podocytes,” Pediatric Nephrology, vol. 28, no. 9, pp. 1803–1812, 2013.
[37]
S. Read, V. Malmstr?m, and F. Powrie, “Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation,” The Journal of Experimental Medicine, vol. 192, no. 2, pp. 295–302, 2000.
[38]
K. Wing, Y. Onishi, P. Prieto-Martin et al., “CTLA-4 control over Foxp3+ regulatory T cell function,” Science, vol. 322, no. 5899, pp. 271–275, 2008.
[39]
D. S. Segundo, J. C. Ruiz, M. Izquierdo et al., “Calcineurin inhibitors, but not rapamycin, reduce percentages of CD4+CD25+FOXP3+ regulatory T cells in renal transplant recipients,” Transplantation, vol. 82, no. 4, pp. 550–557, 2006.
[40]
G. Andreola, M. Chittenden, J. Shaffer et al., “Mechanisms of donor-specific tolerance in recipients of haploidentical combined bone marrow/kidney transplantation,” American Journal of Transplantation, vol. 11, no. 6, pp. 1236–1247, 2011.
[41]
S. Shibutani, F. Inoue, O. Aramaki et al., “Effects of immunosuppressants on induction of regulatory cells after intratracheal delivery of alloantigen,” Transplantation, vol. 79, no. 8, pp. 904–913, 2005.
[42]
J. H. L. Velthuis, W. M. Mol, W. Weimar, and C. C. Baan, “CD4+ CD2 regulatory T cells can mediate donor nonreactivity in long-term immunosuppressed kidney allograft patients,” American Journal of Transplantation, vol. 6, no. 12, pp. 2955–2964, 2006.