全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Confocal Laser Endomicroscopy: Applications in Clinical and Translational Science—A Comprehensive Review

DOI: 10.5402/2012/387145

Full-Text   Cite this paper   Add to My Lib

Abstract:

Confocal laser endomicroscopy (CLE) is a novel tool in the endoscopist’s armamentarium. It allows on-site histological information. The ability of gastroenterologists to interpret such microscopic information has been demonstrated in multiple studies from the upper and lower gastrointestinal tract. Recently, the field of application has expanded to provide hepatobiliary and intra-abdominal CLE imaging. CLE allows “smart,” targeted biopsies and is able to guide endoscopic interventions. But CLE is also translational in its approach and permits functional imaging that significantly impacts on our understanding of gastrointestinal diseases. Molecular imaging with CLE allows detection and characterization of lesions and may even be used for prediction of response to targeted therapy. This paper provides a comprehensive review over current applications of CLE in clinical applications and translational science. 1. Introduction Confocal laser endomicroscopy (CLE) is a novel endoscopic method that permits on-site microscopy of the gastrointestinal mucosa after the application of a fluorescent agent. Since the first description in 2004 [1], the number of diseases studied with this technique has been steadily growing [2–9]. Trials with CLE have moved from feasibility studies in different parts of the endoscopically accessible areas of the gastrointestinal tract towards inflammatory and (pre-) neoplastic diseases that are often only incompletely appreciated by random biopsies. Here, CLE is the tool to enable “smart” biopsies, biopsies that are targeted to areas of interest by means of intravital microscopy. But indications have broadened from the upper and lower GI tract towards intravital microscopy of the biliary tract, the liver or pancreas. In addition, endoscopic disciplines outside the field of gastroenterology have evaluated CLE within their field. The option of intravital microscopy makes CLE an ideal tool to study pathophysiological events dynamically in their natural surroundings in patients. Labeling of molecular targets links clinical patient care to translational science. 2. Technique of Endomicroscopy and Staining Protocols 2.1. Technique of Confocal Endomicroscopy Light microscopy uses white light in the visible range and lens systems for magnification. This necessitates incident light shining through thin, translucent tissue section in bench top light microscopy. For endoscopy, ultrahigh magnification endoscopes have been developed (“Endocytoscopy”) that deliver high resolution images of the uppermost epithelial layer of the gastrointestinal tract.

References

[1]  R. Kiesslich, J. Burg, M. Vieth et al., “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology, vol. 127, no. 3, pp. 706–713, 2004.
[2]  M. Goetz, A. Watson, and R. Kiesslich, “Confocal laser endomicroscopy in gastrointestinal diseases,” Journal of Biophotonics, vol. 4, no. 7-8, pp. 498–508, 2011.
[3]  A. Hoffman, M. Goetz, M. Vieth, P. R. Galle, M. F. Neurath, and R. Klesslich, “Confocal laser endomicroscopy technical status and current indications,” Endoscopy, vol. 38, no. 12, pp. 1275–1283, 2006.
[4]  R. Kiesslich, M. Goetz, and M. F. Neurath, “Confocal Laser Endomicroscopy for Gastrointestinal Diseases,” Gastrointestinal Endoscopy Clinics of North America, vol. 18, no. 3, pp. 451–466, 2008.
[5]  R. Kiesslich, M. Goetz, M. Vieth, P. R. Galle, and M. F. Neurath, “Technology insight: confocal laser endoscopy for in vivo diagnosis of colorectal cancer,” Nature Clinical Practice Oncology, vol. 4, no. 8, pp. 480–490, 2007.
[6]  G. D. De Palma, M. B. Wallace, and M. Giovannini, “Confocal laser endomicroscopy,” Gastroenterology Research and Practice, vol. 2012, Article ID 216209, 2 pages, 2012.
[7]  M. B. Wallace and P. Fockens, “Probe-based confocal laser endomicroscopy,” Gastroenterology, vol. 136, no. 5, pp. 1509–1513, 2009.
[8]  V. Becker, T. Vercauteren, C. H. von Weyhern, C. Prinz, R. M. Schmid, and A. Meining, “High-resolution miniprobe-based confocal microscopy in combination with video mosaicing (with video),” Gastrointestinal Endoscopy, vol. 66, no. 5, pp. 1001–1007, 2007.
[9]  A. Meining, “Confocal endomicroscopy,” Gastrointestinal Endoscopy Clinics of North America, vol. 19, no. 4, pp. 629–635, 2009.
[10]  R. S. Kwon, L. M. Wong Kee Song, D. G. Adler et al., “Endocytoscopy,” Gastrointestinal Endoscopy, vol. 70, no. 4, pp. 610–613, 2009.
[11]  K. Sasajima, S. E. Kudo, H. Inoue et al., “Real-time in vivo virtual histology of colorectal lesions when using the endocytoscopy system,” Gastrointestinal Endoscopy, vol. 63, no. 7, pp. 1010–1017, 2006.
[12]  S. E. Kudo, K. Wakamura, N. Ikehara, Y. Mori, H. Inoue, and S. Hamatani, “Diagnosis of colorectal lesions with a novel endocytoscopic classification—a pilot study,” Endoscopy, vol. 43, pp. 869–875, 2011.
[13]  M. B. Wallace, A. Meining, M. I. Canto et al., “The safety of intravenous fluorescein for confocal laser endomicroscopy in the gastrointestinal tract,” Alimentary Pharmacology and Therapeutics, vol. 31, no. 5, pp. 548–552, 2010.
[14]  A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointestinal Endoscopy, vol. 62, no. 5, pp. 686–695, 2005.
[15]  M. Goetz, T. Toermer, M. Vieth et al., “Simultaneous confocal laser endomicroscopy and chromoendoscopy with topical cresyl violet,” Gastrointestinal Endoscopy, vol. 70, no. 5, pp. 959–968, 2009.
[16]  M. Goetz, C. Footner, E. Schirrmacher et al., “In-vivo confocal real-time mini-microscopy in animal models of human inflammatory and neoplastic diseases,” Endoscopy, vol. 39, no. 4, pp. 350–356, 2007.
[17]  K. B. Dunbar, E. A. Montgomery, and M. I. Canto, “The learning curve of in vivo confocal laser endomicroscopy for prediction of Barrett's esophagus,” Gastroenterology, vol. 134, supplement 1, no. 4, pp. A-62–A-63, 2008.
[18]  http://www.endomicroscopy.org/learningcenter/.
[19]  R. Kiesslich, P. R. Galle, and M. F. Neurath, Eds., Atlas of Endomicroscopy, Springer Medizin, Heidelberg, Germany, 2008.
[20]  A. M. Buchner, V. Gomez, M. G. Heckman et al., “The learning curve of in vivo probe-based confocal laser endomicroscopy for prediction of colorectal neoplasia,” Gastrointestinal Endoscopy, vol. 73, no. 3, pp. 556–560, 2011.
[21]  K. B. Dunbar, P. Okolo, E. Montgomery, and M. I. Canto, “Confocal laser endomicroscopy in Barrett's esophagus and endoscopically inapparent Barrett's neoplasia: a prospective, randomized, double-blind, controlled, crossover trial,” Gastrointestinal Endoscopy, vol. 70, no. 4, pp. 645–654, 2009.
[22]  R. Kiesslich, M. Goetz, K. Lammersdorf et al., “Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis,” Gastroenterology, vol. 132, no. 3, pp. 874–882, 2007.
[23]  K. Y. Lin, M. Maricevich, N. Bardeesy, R. Weissleder, and U. Mahmood, “In vivo quantitative microvasculature phenotype imaging of healthy and malignant tissues using a fiber-optic confocal laser microprobe,” Translational Oncology, vol. 1, pp. 84–94, 2008.
[24]  V. Becker, M. Vieth, M. Bajbouj, R. M. Schmid, and A. Meining, “Confocal laser scanning fluorescence microscopy for in vivo determination of microvessel density in Barrett's esophagus,” Endoscopy, vol. 40, no. 11, pp. 888–891, 2008.
[25]  R. Tous, J. Delgado, T. Zinkl et al., “The anatomy of an optical biopsy semantic retrieval system,” IEEE MultiMedia, vol. 19, pp. 16–27, 2012.
[26]  B. Andre, T. Vercauteren, A. M. Buchner, M. W. Shahid, M. B. Wallace, and N. Ayache, “An image retrieval approach to setup difficulty levels in training systems for endomicroscopy diagnosis,” Medical Image Computing and Computer-Assisted Intervention, vol. 13, pp. 480–487, 2010.
[27]  O. Pech, T. Rabenstein, H. Manner et al., “Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus,” Clinical Gastroenterology and Hepatology, vol. 6, no. 1, pp. 89–94, 2008.
[28]  H. Liu, Y. Q. Li, T. Yu et al., “Confocal laser endomicroscopy for superficial esophageal squamous cell carcinoma,” Endoscopy, vol. 41, no. 2, pp. 99–106, 2009.
[29]  R. Kiesslich, L. Gossner, M. Goetz et al., “In vivo histology of Barrett's esophagus and associated neoplasia by confocal laser endomicroscopy,” Clinical Gastroenterology and Hepatology, vol. 4, no. 8, pp. 979–987, 2006.
[30]  H. Pohl, T. R?sch, M. Vieth et al., “Miniprobe confocal laser microscopy for the detection of invisible neoplasia in patients with Barrett's oesophagus,” Gut, vol. 57, no. 12, pp. 1648–1653, 2008.
[31]  M. Bajbouj, M. Vieth, T. R?sch et al., “Probe-based confocal laser endomicroscopy compared with standard four-quadrant biopsy for evaluation of neoplasia in Barretts esophagus,” Endoscopy, vol. 42, no. 6, pp. 435–440, 2010.
[32]  C. L. Chu, Y. B. Zhen, G. P. Lv et al., “Microalterations of esophagus in patients with non-erosive reflux disease: in-vivo diagnosis by confocal laser endomicroscopy and its relationship with gastroesophageal reflux,” The American Journal of Gastroenterology, vol. 107, pp. 864–874, 2012.
[33]  J. N. Zhang, Y. Q. Li, Y. A. Zhao et al., “Classification of gastric pit patterns by confocal endomicroscopy,” Gastrointestinal Endoscopy, vol. 67, no. 6, pp. 843–853, 2008.
[34]  P. Wang, R. Ji, T. Yu et al., “Classification of histological severity of Helicobacter pylori—associated gastritis by confocal laser endomicroscopy,” World Journal of Gastroenterology, vol. 16, no. 41, pp. 5203–5210, 2010.
[35]  R. Kiesslich, M. Goetz, J. Burg et al., “Diagnosing Helicobacter pylori in vivo by confocal laser endoscopy,” Gastroenterology, vol. 128, no. 7, pp. 2119–2123, 2005.
[36]  R. Ji, Y. Q. Li, X. M. Gu, T. Yu, X. L. Zuo, and C. J. Zhou, “Confocal laser endomicroscopy for diagnosis of Helicobacter pylori infection: a prospective study,” Journal of Gastroenterology and Hepatology, vol. 25, no. 4, pp. 700–705, 2010.
[37]  Y. T. Guo, Y. Q. Li, T. Yu et al., “Diagnosis of gastric intestinal metaplasia with confocal laser endomicroscopy in vivo: a prospective study,” Endoscopy, vol. 40, no. 7, pp. 547–553, 2008.
[38]  W. B. Li, X. L. Zuo, F. Zuo et al., “Characterization and identification of gastric hyperplastic polyps and adenomas by confocal laser endomicroscopy,” Surgical Endoscopy and Other Interventional Techniques, vol. 24, no. 3, pp. 517–524, 2010.
[39]  K. G. Yeoh, M. Salto-Tellez, and C. J. Khor, Confocal Laser Endoscopy Is Useful for In-Vivo Rapid diagnosIs of Gastric Neoplasia and Preneoplasia, Digestive Disease Weak, Chicago, Ill, USA, 2005.
[40]  S. Kitakabe, Y. Niwa, and Y. Hirooka, Confocal Laser Endoscopy for the Diagnosis of Gastric Diseases In Vivo, Digestive Disease Weak, Chicago, Ill, USA, 2005.
[41]  W. B. Li, X. L. Zuo, C. Q. Li et al., “Diagnostic value of confocal laser endomicroscopy for gastric superficial cancerous lesions,” Gut, vol. 60, no. 3, pp. 299–306, 2011.
[42]  R. Ji, X. L. Zuo, C. Q. Li, C. J. Zhou, and Y. Q. Li, “Confocal endomicroscopy for in vivo prediction of completeness after endoscopic mucosal resection,” Surgical Endoscopy, vol. 25, no. 6, pp. 1933–1938, 2010.
[43]  R. W. L. Leong, N. Q. Nguyen, C. G. Meredith et al., “In vivo confocal endomicroscopy in the diagnosis and evaluation of celiac disease,” Gastroenterology, vol. 135, no. 6, pp. 1870–1876, 2008.
[44]  U. Günther, S. Daum, F. Heller et al., “Diagnostic value of confocal endomicroscopy in celiac disease,” Endoscopy, vol. 42, no. 3, pp. 197–202, 2010.
[45]  K. Venkatesh, A. Abou-Taleb, M. Cohen et al., “Role of confocal endomicroscopy in the diagnosis of celiac disease,” Journal of Pediatric Gastroenterology and Nutrition, vol. 51, no. 3, pp. 274–279, 2010.
[46]  S. Sanduleanu, A. Driessen, E. Gomez-Garcia, W. Hameeteman, A. de Bru?ne, and A. Masclee, “In vivo diagnosis and classification of colorectal neoplasia by chromoendoscopy-guided confocal laser endomicroscopy,” Clinical Gastroenterology and Hepatology, vol. 8, no. 4, pp. 371–378, 2010.
[47]  T. Kuiper, F. J. van den Broek, S. van Eeden et al., “New classification for probe-based confocal laser endomicroscopy in the colon,” Endoscopy, vol. 43, pp. 1076–1081, 2011.
[48]  A. M. Buchner, M. W. Shahid, M. G. Heckman et al., “Comparison of probe-based confocal laser endomicroscopy with virtual chromoendoscopy for classification of colon polyps,” Gastroenterology, vol. 138, no. 3, pp. 834–842, 2010.
[49]  D. K. Rex, C. Kahi, M. O'Brien et al., “The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps,” Gastrointestinal Endoscopy, vol. 73, no. 3, pp. 419–422, 2011.
[50]  K. Sumiyama, R. Kiesslich, T. R. Ohya, M. Goetz, and H. Tajiri, “In vivo imaging of enteric neuronal networks in humans using confocal laser endomicroscopy,” Gastroenterology, vol. 143, pp. 1152–1153, 2012.
[51]  F. J. C. van den Broek, P. C. F. Stokkers, J. B. Reitsma et al., “Random biopsies taken during colonoscopic surveillance of patients with longstanding ulcerative colitis: low yield and absence of clinical consequences,” American Journal of Gastroenterology. In press.
[52]  H. Neumann, M. Vieth, R. Atreya et al., “Assessment of Crohn's disease activity by confocal laser endomicroscopy,” Inflammatory Bowel Diseases, vol. 18, no. 12, pp. 2261–2269, 2012.
[53]  R. Kiesslich, A. Hoffman, M. Goetz et al., “In vivo diagnosis of collagenous colitis by confocal endomicroscopy,” Gut, vol. 55, no. 4, pp. 591–592, 2006.
[54]  A. Zambelli, V. Villanacci, E. Buscarini, G. Bassotti, and L. Albarello, “Collagenous colitis: a case series with confocal laser microscopy and histology correlation,” Endoscopy, vol. 40, no. 7, pp. 606–608, 2008.
[55]  A. Meining, S. Schwendy, V. Becker, R. M. Schmid, and C. Prinz, “In vivo histopathology of lymphocytic colitis,” Gastrointestinal Endoscopy, vol. 66, no. 2, pp. 398–400, 2007.
[56]  C. Bojarski, U. Günther, K. Rieger et al., “In vivo diagnosis of acute intestinal graft-versus-host disease by confocal endomicroscopy,” Endoscopy, vol. 41, no. 5, pp. 433–438, 2009.
[57]  U. Günther, H. J. Epple, F. Heller et al., “In vivo diagnosis of intestinal spirochaetosis by confocal endomicroscopy,” Gut, vol. 57, no. 9, pp. 1331–1333, 2008.
[58]  T. R?sch, K. Hofrichter, E. Frimberger et al., “ERCP or EUS for tissue diagnosis of biliary strictures? A prospective comparative study,” Gastrointestinal Endoscopy, vol. 60, no. 3, pp. 390–396, 2004.
[59]  A. Meining, E. Frimberger, V. Becker et al., “Detection of cholangiocarcinoma in vivo using miniprobe-based confocal fluorescence microscopy,” Clinical Gastroenterology and Hepatology, vol. 6, no. 9, pp. 1057–1060, 2008.
[60]  C. S. Loeser, M. E. Robert, A. Mennone, M. H. Nathanson, and P. Jamidar, “Confocal endomicroscopic examination of malignant biliary strictures and histologic correlation with lymphatics,” Journal of Clinical Gastroenterology, vol. 45, no. 3, pp. 246–252, 2011.
[61]  F. K. Shieh, H. Drumm, M. H. Nathanson, and P. A. Jamidar, “High-definition confocal endomicroscopy of the common bile duct,” Journal of Clinical Gastroenterology, vol. 46, pp. 401–406, 2012.
[62]  M. Wallace, G. Y. Lauwers, Y. Chen et al., “Miami classification for probe-based confocal laser endomicroscopy,” Endoscopy, vol. 43, pp. 882–891, 2011.
[63]  A. Meining, R. J. Shah, A. Slivka et al., “Classification of probe-based confocal laser endomicroscopy findings in pancreaticobiliary strictures,” Endoscopy, vol. 44, pp. 251–257, 2012.
[64]  V. J. Konda, H. R. Aslanian, M. B. Wallace, U. D. Siddiqui, J. Hart, and I. Waxman, “First assessment of needle-based confocal laser endomicroscopy during EUS-FNA procedures of the pancreas (with videos),” Gastrointestinal Endoscopy, vol. 74, no. 5, pp. 1049–1060, 2011.
[65]  S. von Delius, H. Feussner, D. Wilhelm et al., “Transgastric in vivo histology in the peritoneal cavity using miniprobe-based confocal fluorescence microscopy in an acute porcine model,” Endoscopy, vol. 39, no. 5, pp. 407–411, 2007.
[66]  S. V. Kantsevoy, R. Kiesslich, X. Dray et al., “Translumenal intraperitoneal confocal laser endomicroscopy: a pilot study in a porcine model,” Gastrointestinal Endoscopy, vol. 67, p. AB117, 2008.
[67]  M. Goetz, R. Klesslich, H. P. Dienes et al., “In vivo confocal laser endomicroscopy of the human liver: a novel method for assessing liver microarchitecture in real time,” Endoscopy, vol. 40, no. 7, pp. 554–562, 2008.
[68]  U. Denzer, A. Arnoldy, S. Kanzler, P. R. Galle, H. P. Dienes, and A. W. Lohse, “Prospective randomized comparison of minilaparoscopy and percutaneous liver biopsy: diagnosis of cirrhosis and complications,” Journal of Clinical Gastroenterology, vol. 41, no. 1, pp. 103–110, 2007.
[69]  A. Hoffman, F. Rahman, S. Prengel et al., “Mini-laparoscopy in the endoscopy unit: safety and outcomes in over one thousand patients,” The World Journal of Gastrointestinal Endoscopy, vol. 3, pp. 6–10, 2011.
[70]  M. Goetz, I. Deris, M. Vieth et al., “Near-infrared confocal imaging during mini-laparoscopy: a novel rigid endomicroscope with increased imaging plane depth,” Journal of Hepatology, vol. 53, no. 1, pp. 84–90, 2010.
[71]  T. Ishizawa, S. Tamura, K. Masuda et al., “Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery,” Journal of the American College of Surgeons, vol. 208, no. 1, pp. e1–e4, 2009.
[72]  N. Q. Nguyen, A. V. Biankin, R. W. Leong et al., “Real time intraoperative confocal laser microscopy-guided surgery,” Annals of Surgery, vol. 249, pp. 735–737, 2009.
[73]  L. D. Swindle, S. G. Thomas, M. Freeman, and P. M. Delaney, “View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging,” Journal of Investigative Dermatology, vol. 121, no. 4, pp. 706–712, 2003.
[74]  P. Anikijenko, L. T. Vo, E. R. Murr et al., “In vivo detection of small subsurface melanomas in athymic mice using noninvasive fiber optic confocal imaging,” Journal of Investigative Dermatology, vol. 117, no. 6, pp. 1442–1448, 2001.
[75]  G. A. Sonn, K. E. Mach, K. Jensen et al., “Fibered confocal microscopy of bladder tumors: an ex vivo study,” Journal of Endourology, vol. 23, no. 2, pp. 197–201, 2009.
[76]  C. Wiesner, W. J?ger, A. Salzer et al., “Confocal laser endomicroscopy for the diagnosis of urothelial bladder neoplasia: a technology of the future?” British Journal of Urology International, vol. 107, no. 3, pp. 399–403, 2011.
[77]  G. A. Sonn, S. N. E. Jones, T. V. Tarin et al., “Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy,” Journal of Urology, vol. 182, no. 4, pp. 1299–1305, 2009.
[78]  B. R. Haxel, M. Goetz, R. Kiesslich, and J. Gosepath, “Confocal endomicroscopy: a novel application for imaging of oral and oropharyngeal mucosa in human,” European Archives of Oto-Rhino-Laryngology, vol. 267, no. 3, pp. 443–448, 2010.
[79]  B. Pogorzelski, U. Hanenkamp, M. Goetz, R. Kiesslich, and J. Gosepath, “Systematic intraoperative application of confocal endomicroscopy for early detection and resection of squamous cell carcinoma of the head and neck: a preliminary report,” Archives of Otolaryngology—Head & Neck Surgery, vol. 138, pp. 404–411, 2012.
[80]  J. Tan, M. A. Quinn, J. M. Pyman, P. M. Delaney, and W. J. McLaren, “Detection of cervical intraepithelial neoplasia in vivo using confocal endomicroscopy,” British Journal of Obstetrics and Gynaecology, vol. 116, no. 12, pp. 1663–1670, 2009.
[81]  S. Foersch, A. Heimann, A. Ayyad et al., “Confocal laser endomicroscopy for diagnosis and histomorphologic imaging of brain tumors in vivo,” PLoS One, vol. 7, no. 7, article e41760, 2012.
[82]  J. Eschbacher, N. L. Martirosyan, P. Nakaji et al., “In vivo intraoperative confocal microscopy for real-time histopathological imaging of brain tumors,” Journal of Neurosurgery, vol. 116, pp. 854–860, 2012.
[83]  N. L. Martirosyan, D. D. Cavalcanti, J. M. Eschbacher et al., “Use of in vivo near-infrared laser confocal endomicroscopy with indocyanine green to detect the boundary of infiltrative tumor,” Journal of Neurosurgery, vol. 115, pp. 1131–1138, 2011.
[84]  M. Goetz and R. Kiesslich, “Advances of endomicroscopy for gastrointestinal physiology and diseases,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 298, no. 6, pp. G797–G806, 2010.
[85]  P. M. Delaney, M. R. Harris, and R. G. King, “Novel microscopy using fibre optic confocal imaging and its suitability for subsurface blood vessel imaging in vivo,” Clinical and Experimental Pharmacology and Physiology, vol. 20, no. 3, pp. 197–198, 1993.
[86]  P. M. Delaney, M. R. Harris, and R. G. King, “Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging,” Applied Optics, vol. 33, no. 4, pp. 573–377, 1994.
[87]  P. M. Delaney, R. G. King, J. R. Lambert, and M. R. Harris, “Fibre optic confocal imaging (FOCI) for subsurface microscopy of the colon in vivo,” Journal of Anatomy, vol. 184, no. 1, pp. 157–160, 1994.
[88]  M. Goetz, B. Memadathil, S. Biesterfeld et al., “In vivo subsurface morphological and functional cellular and subcellular imaging of the gastrointestinal tract with confocal mini-microscopy,” World Journal of Gastroenterology, vol. 13, no. 15, pp. 2160–2165, 2007.
[89]  W. J. McLaren, P. Anikijenko, S. G. Thomas, P. M. Delaney, and R. G. King, “In vivo detection of morphological and microvascular changes of the colon in association with colitis using fiberoptic confocal imaging (FOCI),” Digestive Diseases and Sciences, vol. 47, no. 11, pp. 2424–2433, 2002.
[90]  M. Goetz, M. Vieth, S. Kanzler et al., “In vivo confocal laser laparoscopy allows real time subsurface microscopy in animal models of liver disease,” Journal of Hepatology, vol. 48, no. 1, pp. 91–97, 2008.
[91]  M. Goetz, J. V. Ansems, P. R. Galle, M. Schuchmann, and R. Kiesslich, “In vivo real-time imaging of the liver with confocal endomicroscopy permits visualization of the temporospatial patterns of hepatocyte apoptosis,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 301, pp. G764–G772, 2011.
[92]  M. Goetz, S. Thomas, A. Heimann et al., “Dynamic in vivo imaging of microvasculature and perfusion by miniaturized confocal laser microscopy,” European Surgical Research, vol. 41, no. 3, pp. 290–297, 2008.
[93]  A. J. M. Watson, S. Chu, L. Sieck et al., “Epithelial barrier function in vivo is sustained despite gaps in epithelial layers,” Gastroenterology, vol. 129, no. 3, pp. 902–912, 2005.
[94]  R. Kiesslich, M. Goetz, E. M. Angus et al., “Identification of epithelial gaps in human small and large intestine by confocal endomicroscopy,” Gastroenterology, vol. 133, no. 6, pp. 1769–1778, 2007.
[95]  J. J. Liu, K. L. Madsen, P. Boulanger, L. A. Dieleman, J. Meddings, and R. N. Fedorak, “Mind the gaps: confocal endomicroscopy showed increased density of small bowel epithelial gaps in inflammatory bowel disease,” Journal of Clinical Gastroenterology, vol. 45, no. 3, pp. 240–245, 2011.
[96]  J. J. Liu, K. Wong, A. L. Thiesen et al., “Increased epithelial gaps in the small intestines of patients with inflammatory bowel disease: density matters,” Gastrointestinal Endoscopy, vol. 73, no. 6, pp. 1174–1180, 2011.
[97]  D. Moussata, M. Goetz, A. Gloeckner et al., “Confocal laser endomicroscopy is a new imaging modality for recognition of intramucosal bacteria in inflammatory bowel disease in vivo,” Gut, vol. 60, no. 1, pp. 26–33, 2011.
[98]  R. Kiesslich, C. A. Duckworth, D. Moussata et al., “Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease,” Gut, vol. 61, pp. 1146–1153, 2012.
[99]  A. Meining and M. B. Wallace, “Endoscopic imaging of angiogenesis in vivo,” Gastroenterology, vol. 134, no. 4, pp. 915–918, 2008.
[100]  M. Goetz and T. D. Wang, “Molecular imaging in gastrointestinal endoscopy,” Gastroenterology, vol. 138, no. 3, pp. 828.e1–833.e1, 2010.
[101]  U. Mahmood, “Optical molecular imaging approaches in colorectal cancer,” Gastroenterology, vol. 138, no. 2, pp. 419–422, 2010.
[102]  P. L. Hsiung, J. Hardy, S. Friedland et al., “Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy,” Nature Medicine, vol. 14, pp. 454–458, 2008.
[103]  M. Goetz, A. Ziebart, S. Foersch et al., “In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor,” Gastroenterology, vol. 138, no. 2, pp. 435–446, 2010.
[104]  S. Foersch, R. Kiesslich, M. J. Waldner et al., “Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy,” Gut, vol. 59, pp. 1046–1055, 2010.
[105]  C. Fottner, E. Mettler, M. Goetz et al., “In vivo molecular imaging of somatostatin receptors in pancreatic islet cells and neuroendocrine tumors by miniaturized confocal laser-scanning fluorescence microscopy,” Endocrinology, vol. 151, no. 5, pp. 2179–2188, 2010.
[106]  M. S. Hoetker, R. Kiesslich, M. Diken et al., “Molecular in vivo imaging of gastric cancer in a human-murine xenograft model: targeting epidermal growth factor receptor (EGFR),” Gastrointestinal Endoscopy, vol. 76, pp. 612–620, 2012.
[107]  M. S. Hoetker, R. Kiesslich, M. Diken, P. R. Galle, and M. Goetz, “Molecular endomicroscopy predicts tumor response to cetuximab therapy in human colon cancer xenografts,” Gastroenterology, vol. 142, p. S-6, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133