The proinflammatory vasculotoxic effects of intravascular hemolysis are modulated by plasma hemoglobin and heme clearance via the haptoglobin/CD163 system and the hemopexin/CD91 system, respectively, and detoxification through the heme oxygenase/ferritin system. However, sudden or excessive hemolysis can overwhelm these protective systems leading to heme interacting with cells of the vasculature. Heme presents a damage-associated molecular pattern to the innate immune system. Heme is an extracellular inflammatory signaling molecule with strict binding specificity for TLR4 on monocyte/macrophages, endothelial, and other cells. The resulting TLR4 signaling cascade rapidly leads to intracellular oxidative stress and an inflammatory response. Heme also induces a cytoprotective response that includes Nrf2 responsive genes such as heme oxygenase-1, ferritin, haptoglobin, hemopexin, and other antioxidant response genes. It is the balance between the pro-inflammatory/vasculotoxic effects of plasma hemoglobin/heme and the cytoprotective responses that ultimately determines the pathophysiologic outcome in patients. 1. Introduction When hemoglobin (Hb) is released from red blood cells (RBCs) into plasma, it has the potential to release free heme that can trigger severe oxidative, proinflammatory, and pro-thrombotic injury. Heme has several proinflammatory activities, including leukocyte activation and migration, upregulation of adhesion molecules, reactive oxygen species (ROS) production, and induction of cytokine and chemokine expression [1–4]. Organisms have evolved intricate systems to defend against free heme. The term “free” heme will be used loosely in this review, as heme is amphipathic, mostly insoluble in aqueous solutions at neutral pH, and likely bound to proteins and/or lipids in vivo. This review will focus on the proinflammatory and anti-inflammatory molecular signaling events that are activated by cells in response to free heme. 2. Hemolysis and Plasma Defenses Intravascular hemolysis releases Hb from an antioxidant rich environment inside the RBC into the plasma. Once free in plasma the Hb tetramer is in equilibrium with the α/β Hb dimer favored at low plasma Hb concentrations. The Hb dimers bind to haptoglobin which can safely carry Hb to CD163 receptors on macrophages where the Hb is degraded [5–7]. However, during massive or chronic hemolysis, the haptoglobin/CD163 system can be overwhelmed, leaving free Hb in plasma. When not bound to haptoglobin, oxyHb in plasma can react rapidly with nitric oxide (NO) to form nitrate ( ) and ferric Hb
References
[1]
A. V. Gra?a-Souza, M. A. B. Arruda, M. S. de Freitas, C. Barja-Fidalgo, and P. L. Oliveira, “Neutrophil activation by heme: implications for inflammatory processes,” Blood, vol. 99, no. 11, pp. 4160–4165, 2002.
[2]
B. N. Porto, L. S. Alves, P. L. Fernández et al., “Heme induces neutrophil migration and reactive oxygen species generation through signaling pathways characteristic of chemotactic receptors,” Journal of Biological Chemistry, vol. 282, no. 33, pp. 24430–24436, 2007.
[3]
F. A. D. T. G. Wagener, H.-D. Volk, D. Willis et al., “Different faces of the heme-heme oxygenase system in inflammation,” Pharmacological Reviews, vol. 55, no. 3, pp. 551–571, 2003.
[4]
R. T. Figueiredo, P. L. Fernandez, D. S. Mourao-Sa et al., “Characterization of heme as activator of toll-like receptor 4,” Journal of Biological Chemistry, vol. 282, no. 28, pp. 20221–20229, 2007.
[5]
P. W. Buehler and F. D'Agnillo, “Toxicological consequences of extracellular hemoglobin: biochemical and physiological perspectives,” Antioxidants and Redox Signaling, vol. 12, no. 2, pp. 275–291, 2010.
[6]
M. J. Nielsen, H. J. M?ller, and S. K. Moestrup, “Hemoglobin and heme scavenger receptors,” Antioxidants and Redox Signaling, vol. 12, no. 2, pp. 261–273, 2010.
[7]
D. J. Schaer, P. W. Buehler, A. I. Alayash, J. D. Belcher, and G. M. Vercellotti, “Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins,” Blood, vol. 121, no. 8, pp. 1276–1284, 2013.
[8]
M. T. Gladwin, G. J. Kato, D. Weiner et al., “Nitric oxide for inhalation in the acute treatment of sickle cell pain crisis: a randomized controlled trial,” Journal of the American Medical Association, vol. 305, no. 9, pp. 893–902, 2011.
[9]
H. F. Bunn and J. H. Jandl, “Exchange of heme among hemoglobins and between hemoglobin and albumin,” Journal of Biological Chemistry, vol. 243, no. 3, pp. 465–475, 1968.
[10]
P. Ascenzi, A. Bocedi, P. Visca et al., “Hemoglobin and heme scavenging,” IUBMB Life, vol. 57, no. 11, pp. 749–759, 2005.
[11]
E. Tolosano, S. Fagoonee, N. Morello, F. Vinchi, and V. Fiorito, “Heme scavenging and the other facets of hemopexin,” Antioxidants and Redox Signaling, vol. 12, no. 2, pp. 305–320, 2010.
[12]
M. Kristiansen, J. H. Graversen, C. Jacobsen et al., “Identification of the haemoglobin scavenger receptor,” Nature, vol. 409, no. 6817, pp. 198–201, 2001.
[13]
F. Vinchi, L. de Franceschi, A. Ghigo et al., “Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases,” Circulation, vol. 127, no. 12, pp. 1317–1329, 2013.
[14]
J. D. Belcher, J. Nguyen, C. Chen et al., “Plasma hemoglobin and heme trigger Weibel Palade body exocytosis and vaso-occlusion in transgenic sickle mice,” Blood, vol. 118, article 896, 2011.
[15]
G. Andonegui, C. S. Bonder, F. Green et al., “Endothelium-derived toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs,” Journal of Clinical Investigation, vol. 111, no. 7, pp. 1011–1020, 2003.
[16]
J. Fan, R. S. Frey, and A. B. Malik, “TLR4 signaling induces TLR2 expression in endothelial cells via neutrophil NADPH oxidase,” Journal of Clinical Investigation, vol. 112, no. 8, pp. 1234–1243, 2003.
[17]
W. Wang, M. Deng, X. Liu, W. Ai, Q. Tang, and J. Hu, “TLR4 activation induces nontolerant inflammatory response in endothelial cells,” Inflammation, vol. 34, no. 6, pp. 509–518, 2011.
[18]
G. Zanotti, M. Casiraghi, J. B. Abano et al., “Novel critical role of Toll-like receptor 4 in lung ischemia-reperfusion injury and edema,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 297, no. 1, pp. L52–L63, 2009.
[19]
E. M. P?lsson-McDermott and L. A. J. O'Neill, “Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4,” Immunology, vol. 113, no. 2, pp. 153–162, 2004.
[20]
K. M. Valentijn, J. E. Sadler, J. A. Valentijn, J. Voorberg, and J. Eikenboom, “Functional architecture of Weibel-Palade bodies,” Blood, vol. 117, no. 19, pp. 5033–5043, 2011.
[21]
P. L. Fernandez, F. F. Dutra, L. Alves et al., “Heme amplifies the innate immune response to microbial molecules through spleen tyrosine kinase (Syk)-dependent reactive oxygen species generation,” Journal of Biological Chemistry, vol. 285, no. 43, pp. 32844–32851, 2010.
[22]
E. Griffiths, A. Cortes, N. Gilbert, P. Stevenson, S. MacDonald, and D. Pepper, “Haemoglobin-based blood substitutes and sepsis,” The Lancet, vol. 345, no. 8943, pp. 158–160, 1995.
[23]
D. Su, R. I. Roth, M. Yoshida, and J. Levin, “Hemoglobin increases mortality from bacterial endotoxin,” Infection and Immunity, vol. 65, no. 4, pp. 1258–1266, 1997.
[24]
B. N. Y. Setty, S. G. Betal, J. Zhang, and M. J. Stuart, “Heme induces endothelial tissue factor expression: potential role in hemostatic activation in patients with hemolytic anemia,” Journal of Thrombosis and Haemostasis, vol. 6, no. 12, pp. 2202–2209, 2008.
[25]
J. D. Belcher, J. D. Beckman, G. Balla, J. Balla, and G. Vercellotti, “Heme degradation and vascular injury,” Antioxidants and Redox Signaling, vol. 12, no. 2, pp. 233–248, 2010.
[26]
H. S. Park, H. Y. Jung, E. Y. Park, J. Kim, W. J. Lee, and Y. S. Bae, “Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-κB,” Journal of Immunology, vol. 173, no. 6, pp. 3589–3593, 2004.
[27]
A. Loboda, A. Jazwa, A. Grochot-Przeczek et al., “Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities,” Antioxidants and Redox Signaling, vol. 10, no. 10, pp. 1767–1812, 2008.
[28]
K. A. Nath, J. P. Grande, G. Farrugia et al., “Age sensitizes the kidney to heme protein-induced acute kidney injury,” American Journal of Physiology—Renal Physiology, vol. 304, no. 3, pp. F317–F325, 2013.
[29]
E. M. Sikorski, T. Hock, N. Hill-Kapturczak, and A. Agarwal, “The story so far: molecular regulation of the heme oxygenase-1 gene in renal injury,” American Journal of Physiology—Renal Physiology, vol. 286, no. 3, pp. F425–F441, 2004.
[30]
Y.-M. Kim, H.-O. Pae, J. E. Park et al., “Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities,” Antioxidants and Redox Signaling, vol. 14, no. 1, pp. 137–167, 2011.
[31]
T. Ishii, K. Itoh, S. Takahashi et al., “Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages,” Journal of Biological Chemistry, vol. 275, no. 21, pp. 16023–16029, 2000.
[32]
J. J. Boyle, M. Johns, J. Lo et al., “Heme induces heme oxygenase 1 via Nrf2: role in the homeostatic macrophage response to intraplaque hemorrhage,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 11, pp. 2685–2691, 2011.
[33]
S. Singh, S. Vrishni, B. K. Singh, I. Rahman, and P. Kakkar, “Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases,” Free Radical Research, vol. 44, no. 11, pp. 1267–1288, 2010.
[34]
K. Igarashi and J. Sun, “The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation,” Antioxidants and Redox Signaling, vol. 8, no. 1-2, pp. 107–118, 2006.
[35]
C. L. Townsend and R. L. Maynard, “Effects on health of prolonged exposure to low concentrations of carbon monoxide,” Occupational and Environmental Medicine, vol. 59, no. 10, pp. 708–711, 2002.
[36]
R. Motterlini and L. E. Otterbein, “The therapeutic potential of carbon monoxide,” Nature Reviews Drug Discovery, vol. 9, no. 9, pp. 728–743, 2010.
[37]
L. E. Otterbein, M. P. Soares, K. Yamashita, and F. H. Bach, “Heme oxygenase-1: unleashing the protective properties of heme,” Trends in Immunology, vol. 24, no. 8, pp. 449–455, 2003.
[38]
J. K. Sarady, B. S. Zuckerbraun, M. Bilban et al., “Carbon monoxide protection against endotoxic shock involves reciprocal effects on iNOS in the lung and liver,” The FASEB Journal, vol. 18, no. 7, pp. 854–856, 2004.
[39]
S. W. Ryter, L. E. Otterbein, D. Morse, and A. M. K. Choi, “Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance,” Molecular and Cellular Biochemistry, vol. 234-235, pp. 249–263, 2002.
[40]
K. Ohta and A. Yachie, “Development of vascular biology over the past 10 years: heme oxygenase-1 in cardiovascular homeostasis,” Journal of Endovascular Therapy, vol. 11, supplement 2, pp. II140–II150, 2004.
[41]
C. A. Piantadosi, M. S. Carraway, A. Babiker, and H. B. Suliman, “Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via nrf2-mediated transcriptional control of nuclear respiratory factor-1,” Circulation Research, vol. 103, no. 11, pp. 1232–1240, 2008.
[42]
B. Wang, W. Cao, S. Biswal, and S. Doré, “Carbon monoxide-activated Nrf2 pathway leads to protection against permanent focal cerebral ischemia,” Stroke, vol. 42, no. 9, pp. 2605–2610, 2011.
[43]
J. D. Beckman, J. D. Belcher, J. V. Vineyard et al., “Inhaled carbon monoxide reduces leukocytosis in a murine model of sickle cell disease,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 297, no. 4, pp. H1243–H1253, 2009.
[44]
C. N. Nguyen, H.-E. Kim, and S.-G. Lee, “Caffeoylserotonin protects human keratinocyte HaCaT cells against H2O2-induced oxidative stress and apoptosis through upregulation of HO-1 expression via activation of the PI3K/Akt/Nrf2 pathway,” Phytotherapy Research, 2013.
[45]
X. M. Wang, H. P. Kim, K. Nakahira, S. W. Ryter, and A. M. K. Choi, “The heme oxygenase-1/carbon monoxide pathway suppresses TLR4 signaling by regulating the interaction of TLR4 with caveolin-1,” Journal of Immunology, vol. 182, no. 6, pp. 3809–3818, 2009.
[46]
A. Goldberg, M. Parolini, B. Y. Chin et al., “Toll-like receptor 4 suppression leads to islet allograft survival,” The FASEB Journal, vol. 21, no. 11, pp. 2840–2848, 2007.
[47]
B. Wegiel, C. J. Baty, D. Gallo et al., “Cell surface biliverdin reductase mediates biliverdin-induced anti-inflammatory effects via phosphatidylinositol 3-kinase and Akt,” Journal of Biological Chemistry, vol. 284, no. 32, pp. 21369–21378, 2009.
[48]
P. E. Gibbs, C. Tudor, and M. D. Maines, “Biliverdin reductase: more than a namesake—the reductase, its Peptide fragments, and biliverdin regulate activity of the three classes of protein kinase C,” Frontiers in Pharmacology, vol. 3, p. 31, 2012.
[49]
G. Balla, H. S. Jacob, J. Balla et al., “Ferritin: a cytoprotective antioxidant strategem of endothelium,” Journal of Biological Chemistry, vol. 267, no. 25, pp. 18148–18153, 1992.
[50]
J. L. Casey, M. W. Hentze, D. M. Koeller et al., “Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation,” Science, vol. 240, no. 4854, pp. 924–928, 1988.
[51]
R. D. Klausner, T. A. Rouault, and J. B. Harford, “Regulating the fate of mRNA: the control of cellular iron metabolism,” Cell, vol. 72, no. 1, pp. 19–28, 1993.
[52]
P. M. Harrison and P. Arosio, “The ferritins: molecular properties, iron storage function and cellular regulation,” Biochimica et Biophysica Acta, vol. 1275, no. 3, pp. 161–203, 1996.
[53]
P. O. Berberat, M. Katori, E. Kaczmarek et al., “Heavy chain ferritin acts as an antiapoptotic gene that protects livers from ischemia reperfusion injury,” The FASEB Journal, vol. 17, no. 12, pp. 1724–1726, 2003.
[54]
C. Xie, N. Zhang, H. Zhou et al., “Distinct roles of basal steady-state and induced H-ferritin in tumor necrosis factor-induced death in L929 cells,” Molecular and Cellular Biology, vol. 25, no. 15, pp. 6673–6681, 2005.
[55]
M. Goralska, B. L. Holley, and M. C. McGahan, “Overexpression of H- and L-ferritin subunits in lens epithelial cells: Fe metabolism and cellular response to UVB irradiation,” Investigative Ophthalmology and Visual Science, vol. 42, no. 8, pp. 1721–1727, 2001.
[56]
D. Kaur, F. Yantiri, S. Rajagopalan et al., “Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease,” Neuron, vol. 37, no. 6, pp. 899–909, 2003.
[57]
A. Cozzi, B. Corsi, S. Levi, P. Santambrogio, A. Albertini, and P. Arosio, “Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: in vivo role of ferritin ferroxidase activity,” Journal of Biological Chemistry, vol. 275, no. 33, pp. 25122–25129, 2000.
[58]
A. A. Alkhateeb and J. R. Connor, “Nuclear ferritin: a new role for ferritin in cell biology,” Biochimica et Biophysica Acta, vol. 1800, no. 8, pp. 793–797, 2010.
[59]
C. X. Cai, D. E. Birk, and T. F. Linsenmayer, “Nuclear ferritin protects DNA from UV damage in corneal epithelial cells,” Molecular Biology of the Cell, vol. 9, no. 5, pp. 1037–1051, 1998.
[60]
F. Liu, Z.-Y. Du, J.-L. He, X.-Q. Liu, Q.-B. Yu, and Y.-X. Wang, “FTH1 binds to Daxx and inhibits Daxx-mediated cell apoptosis,” Molecular Biology Reports, vol. 39, no. 2, pp. 873–879, 2012.
[61]
J. D. Belcher, H. Mahaseth, T. E. Welch, L. E. Otterbein, R. P. Hebbel, and G. M. Vercellotti, “Heme oxygenase-1 is a modulator of inflammation and vaso-occlusion in transgenic sickle mice,” Journal of Clinical Investigation, vol. 116, no. 3, pp. 808–816, 2006.
[62]
J. D. Belcher, J. V. Vineyard, C. M. Bruzzone et al., “Heme oxygenase-1 gene delivery by Sleeping Beauty inhibits vascular stasis in a murine model of sickle cell disease,” Journal of Molecular Medicine, vol. 88, no. 7, pp. 665–675, 2010.
[63]
R. P. Hebbel, “Reconstructing sickle cell disease: a data-based analysis of the “hyperhemolysis paradigm” for pulmonary hypertension from the perspective of evidence-based medicine,” American Journal of Hematology, vol. 86, no. 2, pp. 123–154, 2011.
[64]
U. Muller-Eberhard, J. Javid, H. H. Liem, A. Hanstein, and M. Hanna, “Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases,” Blood, vol. 32, no. 5, pp. 811–815, 1968.
[65]
C. D. Reiter, X. Wang, J. E. Tanus-Santos et al., “Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease,” Nature Medicine, vol. 8, no. 12, pp. 1383–1389, 2002.
[66]
L.-C. Wu, C.-W. Sun, T. M. Ryan, K. M. Pawlik, J. Ren, and T. M. Townes, “Correction of sickle cell disease by homologous recombination in embryonic stem cells,” Blood, vol. 108, no. 4, pp. 1183–1188, 2006.
[67]
M. L. Jison, P. J. Munson, J. J. Barb et al., “Blood mononuclear cell gene expression profiles characterize the oxidant, hemolytic, and inflammatory stress of sickle cell disease,” Blood, vol. 104, no. 1, pp. 270–280, 2004.
[68]
S. K. Ballas and M. J. Marcolina, “Hyperhemolysis during the evolution of uncomplicated acute painful episodes in patients with sickle cell anemia,” Transfusion, vol. 46, no. 1, pp. 105–110, 2006.
[69]
J. D. Belcher, H. Mahaseth, T. E. Welch et al., “Critical role of endothelial cell activation in hypoxia-induced vasoocclusion in transgenic sickle mice,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 288, no. 6, pp. H2715–H2725, 2005.
[70]
R. ?llinger, H. Wang, K. Yamashita et al., “Therapeutic applications of bilirubin and biliverdin in transplantation,” Antioxidants and Redox Signaling, vol. 9, no. 12, pp. 2175–2185, 2007.
[71]
R. ?llinger, K. Yamashita, M. Bilban et al., “Bilirubin and biliverdin treatment of atherosclerotic diseases,” Cell Cycle, vol. 6, no. 1, pp. 39–43, 2007.
[72]
K. D. Vandegriff, M. A. Young, J. Lohman et al., “CO-MP4, a polyethylene glycol-conjugated haemoglobin derivative and carbon monoxide carrier that reduces myocardial infarct size in rats,” British Journal of Pharmacology, vol. 154, no. 8, pp. 1649–1661, 2008.