Twenty-four clinically Sarcoptes-infested dogs were randomly enrolled into three groups (groups A, B, and C), 8 dogs in each group. Group A was treated with ivermectin + Calendula officinalis flower extract (CFE). Group B was treated with ivermectin + N-acetyl cysteine (NAC) (standard positive controls), while group C (negative control) was treated with ivermectin alone. Another eight healthy dogs were used as healthy controls (group D). By day 28 after therapy, the dogs treated adjunctly with CFE as well as with N-acetyl cysteine revealed significant ( ) amelioration of the altered markers of oxidative stress towards normalcy. The dogs of these groups also revealed significant ( ) amelioration of apoptotic leukocytes towards normalcy, and values were comparable to those of the healthy controls. While by day 28 after therapy, ivermectin alone treated dogs could not achieve comparable values to those of the healthy controls. The dogs treated adjunctly with CFE and N-acetyl cysteine also revealed faster parasitological as well as clinical cure rate as compared to the ivermectin alone treated dogs. In conclusion, CFE has remarkable antioxidant and antiapoptotic potential and can constitute a potential adjunctive remedy with miticide for the therapeutic management of canine sarcoptic mange. 1. Introduction Sarcoptic mange is a highly contagious and pruritic acariosis of the skin affecting abroad host range including more than 100 mammalian species belonging to 27 families from 10 orders [1, 2] and afflicts 300 million people globally. In many animal species, the prevalence of sarcoptic mange is very high and an untreated animal often succumbs [3, 4]. In addition to its potential to cause huge economic loss due to reduced production and increased mortality in animals, [1, 5] it is an emerging/reemerging infectious disease that threatens human and animal health globally [6–8]. In developing countries, it is a significant public health problem because it is highly prevalent and complications are frequent [9]. Emerging resistance to the currently available therapeutic permethrin and ivermectin has recently been reported from regions where previously effective acaricides have been used extensively in socially disadvantaged communities and in some developing countries [10–12]. In addition, drug residue can build up during extensive and long-term use, which poses environmental hazards and can lead to increased drug resistance in the target species [10, 13]. This emphasizes the need to identify potential targets for chemotherapeutic and/or immunological
References
[1]
S. Bornstein, T. M?rner, and W. M. Samuel, “Sarcoptes scabiei and sarcoptic mange,” in Parasitic Diseases of Wild Mammals, W. M. Samuel, M. J. Pybus, and A. A. Kocan, Eds., pp. 107–119, Iowa State University Press, Ames, Iowa, USA, 2nd edition, 2001.
[2]
D. B. Pence and E. Ueckermann, “Sarcoptic manage in wildlife,” Revue Scientifique et Technique, vol. 21, no. 2, pp. 385–398, 2002.
[3]
D. J. Kemp, S. F. Walton, P. Harumal, and B. J. Currie, “The scourge of scabies,” Biologist, vol. 49, no. 1, pp. 19–24, 2002.
[4]
N. D. Giadinis, R. Farmaki, N. Papaioannou, E. Papadopoulos, H. Karatzias, and A. F. Koutinas, “Moxidectin efficacy in a goat herd with chronic and generalized sarcoptic mange,” Veterinary Medicine, vol. 2011, Article ID 476348, 4 pages, 2011.
[5]
M. P. Dagleish, Q. Ali, R. K. Powell, D. Butz, and M. H. Woodford, “Fatal Sarcoptes scabiei infection of blue sheep (Pseudois nayaur) in Pakistan,” Journal of Wildlife Diseases, vol. 43, no. 3, pp. 512–517, 2007.
[6]
P. Daszak, A. A. Cunningham, and A. D. Hyatt, “Emerging infectious diseases of wildlife: threats to biodiversity and human health,” Science, vol. 287, no. 5452, pp. 443–449, 2000.
[7]
G. C. Fthenakis, E. Papadopoulos, C. Himonas, L. Leontides, S. Kritas, and J. Papatsas, “Efficacy of moxidectin against sarcoptic mange and effects on milk yield of ewes and growth of lambs,” Veterinary Parasitology, vol. 87, no. 2-3, pp. 207–216, 2000.
[8]
G. C. Fthenakis, A. Karagiannidis, C. Alexopoulos, C. Brozos, and E. Papadopoulos, “Effects of sarcoptic mange on the reproductive performance of ewes and transmission of Sarcoptes scabiei to newborn lambs,” Veterinary Parasitology, vol. 95, no. 1, pp. 63–71, 2001.
[9]
J. Heukelbach, T. Wilcke, B. Winter, and H. Feldmeier, “Epidemiology and morbidity of scabies and pediculosis capitis in resource-poor communities in Brazil,” British Journal of Dermatology, vol. 153, no. 1, pp. 150–156, 2005.
[10]
B. J. Currie, P. Harumal, M. McKinnon, and S. F. Walton, “First documentation of in vivo and in vitro ivermectin resistance in Sarcoptes scabiei,” Clinical Infectious Diseases, vol. 39, no. 1, pp. e8–e12, 2004.
[11]
S. M. Bradberry, S. A. Cage, A. T. Proudfoot, and J. A. Vale, “Poisoning due to pyrethroids,” Toxicological Reviews, vol. 24, no. 2, pp. 93–106, 2005.
[12]
H. Sanderson, B. Laird, L. Pope et al., “Assessment of the environmental fate and effects of ivermectin in aquatic mesocosms,” Aquatic Toxicology, vol. 85, no. 4, pp. 229–240, 2007.
[13]
Y. Terada, N. Murayama, H. Ikemura, T. Morita, and M. Nagata, “Sarcoptes scabiei var. canis refractory to ivermectin treatment in two dogs,” Veterinary Dermatology, vol. 21, no. 6, pp. 608–612, 2010.
[14]
U. Dimri, M. C. Sharma, D. Swarup, R. Ranjan, and M. Kataria, “Alterations in hepatic lipid peroxides and antioxidant profile in Indian water buffaloes suffering from sarcoptic mange,” Research in Veterinary Science, vol. 85, no. 1, pp. 101–105, 2008.
[15]
I. Camkerten, T. Sahin, G. Borazan, A. Gokcen, O. Erel, and A. Das, “Evaluation of blood oxidant/antioxidant balance in dogs with sarcoptic mange,” Veterinary Parasitology, vol. 161, no. 1-2, pp. 106–109, 2009.
[16]
M. A. Saleh, O. M. Mahran, and M. B. Al-Salahy, “Circulating oxidative stress status in dromedary camels infested with sarcoptic mange,” Veterinary Research Communications, vol. 35, no. 1, pp. 35–45, 2011.
[17]
S. K. Singh, U. Dimri, M. C. Sharma, D. Swarup, and B. Sharma, “Determination of oxidative status and apoptosis in peripheral blood of dogs with sarcoptic mange,” Veterinary Parasitology, vol. 178, no. 3-4, pp. 330–338, 2011.
[18]
A. K. Atoui, A. Mansouri, G. Boskou, and P. Kefalas, “Tea and herbal infusions: their antioxidant activity and phenolic profile,” Food Chemistry, vol. 89, no. 1, pp. 27–36, 2005.
[19]
L. Le Marchand, “Cancer preventive effects of flavonoids—a review,” Biomedicine and Pharmacotherapy, vol. 56, no. 6, pp. 296–301, 2002.
[20]
E. Middleton Jr., C. Kandaswami, and T. C. Theoharides, “The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer,” Pharmacological Reviews, vol. 52, no. 4, pp. 673–751, 2000.
[21]
H. K. Kang, D. Ecklund, M. Liu, and S. K. Datta, “Apigenin, a non-mutagenic dietary flavonoid, suppresses lupus by inhibiting autoantigen presentation for expansion of autoreactive Th1 and Th17 cells,” Arthritis Research and Therapy, vol. 11, no. 2, article R59, 13 pages, 2009.
[22]
Y. M. Fonseca, C. D. Catini, F. T. Vicentini, A. Nomizo, R. F. Gerlach, and M. J. Fonseca, “Protective effect of Calendula officinalis extract against UVB-induced oxidative stress in skin: evaluation of reduced glutathione levels and matrix metalloproteinase secretion,” Journal of Ethnopharmacology, vol. 127, no. 3, pp. 596–601, 2010.
[23]
T. A. Re, D. Mooney, E. Antignac et al., “Application of the threshold of toxicological concern approach for the safety evaluation of calendula flower (Calendula officinalis) petals and extracts used in cosmetic and personal care products,” Food and Chemical Toxicology, vol. 47, no. 6, pp. 1246–1254, 2009.
[24]
K. Krieger, J. Heine, P. Dumont, and K. Hellmann, “Efficacy and safety of imidacloprid 10% plus moxidectin 2.5% spot-on in the treatment of sarcoptic mange and otoacariosis in dogs: results of a European field study,” Parasitology Research, vol. 97, supplement 1, pp. S81–S88, 2005.
[25]
E. J. Vankampen and W. G. Zinglstra, “Calorimetric determination of haemoglobin,” Clinica Chimica Acta, vol. 6, p. 3588, 1961.
[26]
Z. A. Placer, L. L. Cushman, and B. C. Johnson, “Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems,” Analytical Biochemistry, vol. 16, no. 2, pp. 359–364, 1966.
[27]
H. K. Prins and J. A. Loos, “Glutathione,” in Biochemical Methods in Red Cell Genetics, pp. 127–129, Academic Press, New York, NY, USA, 1969.
[28]
D. E. Paglie and W. N. Valentie, “Studies on quantitative and qualitative characterization of erythrocyte glutathione peroxidase,” Journal of Laboratory and Clinical Medicine, vol. 70, pp. 158–169, 1967.
[29]
W. H. Habig, M. J. Pabst, and W. B. Jakoby, “Glutathione S-transferases. The first enzymatic step in mercapturic acid formation,” Journal of Biological Chemistry, vol. 249, no. 22, pp. 7130–7139, 1974.
[30]
M. Minami and H. Yoshikawa, “A simplified assay method of superoxide dismutase activity for clinical use,” Clinical Chemistry, vol. 63, no. 6, pp. 1258–1261, 1979.
[31]
H. U. Bergmayer, “UV method of catalase assay,” in Methods of Enzymatic Analysis, vol. 3, p. 273, Bansal, Weinheim Deer Field Beach, Fla, USA, 1983.
[32]
I. Vermes, C. Haanen, H. Steffens-Nakken, and C. Reutelingsperger, “A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V,” Journal of Immunological Methods, vol. 184, no. 1, pp. 39–51, 1995.
[33]
C. Adrie, M. Bachelet, M. Vayssier-Taussat et al., “Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 3, pp. 389–395, 2001.
[34]
M. Kanbur, O. Atalay, A. Ica, G. Eraslan, and Y. Cam, “The curative and antioxidative efficiency of doramectin and doramectin + vitamin AD3E treatment on Psoroptes cuniculi infestation in rabbits,” Research in Veterinary Science, vol. 85, no. 2, pp. 291–293, 2008.
[35]
U. K. De and S. Dey, “Evaluation of organ function and oxidant/antioxidant status in goats with sarcoptic mange,” Tropical Animal Health and Production, vol. 42, no. 8, pp. 1663–1668, 2010.
[36]
U. Dimri, M. C. Sharma, A. Yamdagni, R. Ranjan, and M. M. S. Zama, “Psoroptic mange infestation increases oxidative stress and decreases antioxidant status in sheep,” Veterinary Parasitology, vol. 168, no. 3-4, pp. 318–322, 2010.
[37]
L. R. Portugal, L. R. Fernandes, V. S. Pietra-Pedroso, H. C. Santiago, R. T. Gazzinelli, and J. I. Alvarez-Leite, “Influence of low-density lipoprotein (LDL) receptor on lipid composition, inflammation and parasitism during Toxoplasma gondii infection,” Microbes and Infection, vol. 10, no. 3, pp. 276–284, 2008.
[38]
E. Jiménez-Medina, A. Garcia-Lora, L. Paco, I. Algarra, A. Collado, and F. Garrido, “A new extract of the plant Calendula officinalis produces a dual in vitro effect: cytotoxic anti-tumor activity and lymphocyte activation,” BMC Cancer, vol. 6, article 119, 2006.
[39]
K. Zitterl-Eglseer, S. Sosa, J. Jurenitsch et al., “Anti-oedematous activities of the main triterpendiol esters of marigold (Calendula officinalis L., Asteraceae),” Journal of Ethnopharmacology, vol. 57, no. 2, pp. 139–144, 1997.
[40]
K. C. Preethi, G. Kuttan, and R. Kuttan, “Anti-inflammatory activity of flower extract of Calendula officinalis Linn. and its possible mechanism of action,” Indian Journal of Experimental Biology, vol. 47, no. 2, pp. 113–120, 2009.
[41]
V. Katalinic, M. Milos, T. Kulisic, and M. Jukic, “Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols,” Food Chemistry, vol. 94, no. 4, pp. 550–557, 2006.
[42]
P. Pommier, F. Gomez, M. P. Sunyach, A. D'Hombres, C. Carrie, and X. Montbarbon, “Phase III randomized trial of Calendula officinalis compared with trolamine for the prevention of acute dermatitis during irradiation for breast cancer,” Journal of Clinical Oncology, vol. 22, no. 8, pp. 1447–1453, 2004.
[43]
A. K. Mishra, A. Mishra, and P. Chattopadhyay, “A pilot study on in vitro evaluation of flowers of Calendula officinalis (L) as natural anti-solar agent,” Journal of Natural Pharmaceuticals, vol. 2, no. 2, pp. 77–79, 2011.
[44]
A. R. Bilia, M. C. Bergonzi, S. Gallori, G. Mazzi, and F. F. Vincieri, “Stability of the constituents of Calendula, milk-thistle and passionflower tinctures by LC-DAD and LC-MS,” Journal of Pharmaceutical and Biomedical Analysis, vol. 30, no. 3, pp. 613–624, 2002.
[45]
J. Bernatoniene, R. Masteikova, J. Davalgiene et al., “Topical application of Calendula officinalis (L.): formulation and evaluation of hydrophilic cream with antioxidant activity,” Journal of Medicinal Plant Research, vol. 5, no. 6, pp. 868–877, 2011.
[46]
M. Albulescu, N. Alexa, and C. Cojan, “Calendula officinalis flower, source of extracts with antioxidant activity,” Series Chemistry, vol. 13, no. 2, pp. 69–176, 2004.
[47]
M. U. Khan, A. Rohilla, D. Bhatt, S. Afrin, S. Rohilla, and S. H. Ansari, “Diverse belongings of Calendula officinalis: an overview,” International Journal of Pharmaceutical Sciences and Drug Research, vol. 3, no. 3, pp. 173–177, 2011.
[48]
H. J. Forman, K. J. Davies, and F. Ursini, “How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo,” Free Radical Biology & Medicine, 2013.
[49]
S. K. Singh, U. Dimri, M. C. Sharma, D. Swarup, M. Kumar, and R. Tiwary, “Psoroptes cuniculi induced oxidative imbalance in rabbits and its alleviation by using vitamins A, D3, E, and H as adjunctive remedial,” Tropical Animal Health and Production, vol. 44, no. 1, pp. 43–48, 2012.