Genetic predisposition of otosclerosis has long been suspected, but unclarified. Unique coexpression pattern of measles virus receptor (CD46) splicing isoforms in the human otic capsule is assumed, since otosclerosis is a measles virus-associated organ-specific disease. In order to identify CD46 involved in the pathogenesis of otosclerosis, we used representative groups of histologically diagnosed otosclerotic, nonotosclerotic, and normal stapes footplates . Consecutive histopathological examinations and CD46-specific Western blot analysis were performed. Normal and nonotosclerotic stapes footplates showed consistent expression of the conventional c, d, e, f, and l CD46 isoforms. In contrast, four novel isoforms (os1–4) translated as intact proteins were additionally detected in each otosclerotic specimen. The study herein presented provides evidence for the otosclerosis-associated expression pattern of CD46. This finding might explain the organ-specific, virus-associated and autoimmune-inflammatory pathogenesis of otosclerosis. Regarding our current knowledge, this is the first report that confirms the presence of four new disease-specific protein variants of CD46. 1. Introduction Otosclerosis is a complex inflammatory bone remodeling disorder of the human otic capsule that leads to progressive conductive and/or sensorineural hearing loss as a consequence of stapes footplate fixation and cochlear bone resorption with endosteal involvement [1]. In the Caucasian population, the prevalence of clinical otosclerosis is 0.3–0.4% of the general population, 5–9% of those with hearing loss, and 18–22% of those with conductive hearing loss [1, 2]. Silent otosclerotic foci are more common: histological otosclerosis without clinical symptoms has been reported as 8–11% in large unselected autopsy series [2]. Otosclerotic foci are limited to the temporal bone, and no lesions have been found outside of the ear [2–5]. Otosclerosis takes approximately two thirdS of stapes ankylosis cases leading to consecutive conductive hearing loss [6]. Differential diagnosis is still based on postoperative histological analysis of the removed stapes footplates [3, 4, 7]. However, several hypotheses suggest viral, autoimmune, and endocrine factors in the genesis of disease, etiopathogenesis of otosclerosis remained unexplained [3, 8–10]. Genetic factors must play a significant role in the etiopathogenesis of otosclerosis, although the precise mode of inheritance is still uncertain [3, 5, 10]. The potential etiologic role of measles virus in the pathogenesis of otosclerosis was
References
[1]
H. F. Schuknecht and W. Barber, “Histologic variants in otosclerosis,” Laryngoscope, vol. 95, no. 11, pp. 1307–1317, 1985.
[2]
F. Declau, M. Van Spaendonck, J. P. Timmermans et al., “Prevalence of otosclerosis in an unselected series of temporal bones,” Otology and Neurotology, vol. 22, no. 5, pp. 596–602, 2001.
[3]
T. Karosi, Z. Szekanecz, and I. Sziklai, “Otosclerosis: an autoimmune disease?” Autoimmunity Reviews, vol. 9, no. 2, pp. 95–101, 2009.
[4]
R. A. Chole and M. McKenna, “Pathophysiology of otosclerosis,” Otology and Neurotology, vol. 22, no. 2, pp. 249–257, 2001.
[5]
F. H. Linthicum Jr., “Histopathology of otosclerosis,” Otolaryngologic Clinics of North America, vol. 26, no. 3, pp. 335–352, 1993.
[6]
T. Karosi, A. Szalmás, P. Csomor, J. Kónya, M. Petkó, and I. Sziklai, “Disease-associated novel CD46 splicing variants and pathologic bone remodeling in otosclerosis,” Laryngoscope, vol. 118, no. 9, pp. 1669–1676, 2008.
[7]
T. Karosi, J. Kónya, M. Petkó et al., “Antimeasles immunoglobulin G for serologic diagnosis of otosclerotic hearing loss,” Laryngoscope, vol. 116, no. 3, pp. 488–493, 2006.
[8]
M. J. McKenna, B. G. Mills, F. R. Galey, and F. H. Linthicum Jr., “Filamentous structures morphologically similar to viral nucleocapsids in otosclerotic lesions in two patients,” American Journal of Otology, vol. 7, no. 1, pp. 25–28, 1986.
[9]
W. Arnold and I. Friedmann, “Otosclerosis: an inflammatory disease of the otic capsule of viral aetiology?” Journal of Laryngology and Otology, vol. 102, no. 10, pp. 865–871, 1988.
[10]
K. Van Den Bogaert, P. J. Govaerts, E. M. R. De Leenheer et al., “Otosclerosis: a genetically heterogeneous disease involving at least three different genes,” Bone, vol. 30, no. 4, pp. 624–630, 2002.
[11]
N. Dhiman, R. M. Jacobson, and G. A. Poland, “Measles virus receptors: SLAM and CD46,” Reviews in Medical Virology, vol. 14, no. 4, pp. 217–229, 2004.
[12]
C. L. Karp, M. Wysocka, L. M. Wahl et al., “Mechanism of suppression of cell-mediated immunity by measles virus,” Science, vol. 273, no. 5272, pp. 228–231, 1996.
[13]
M. Kawano, T. Seya, I. Koni, and H. Mabuchi, “Elevated serum levels of soluble membrane cofactor protein (CD46, MCP) in patients with systemic lupus erythematosus (SLE),” Clinical and Experimental Immunology, vol. 116, no. 3, pp. 542–546, 1999.
[14]
M. B. Lanteri, M. S. Powell, D. Christiansen et al., “Inhibition of hyperacute transplant rejection by soluble proteins with the functional domains of CD46 and Fcγ/RII,” Transplantation, vol. 69, no. 6, pp. 1128–1136, 2000.
[15]
I. Bel Hadj Ali, M. Thys, N. Beltaief et al., “A new locus for otosclerosis, OTSC8, maps to the pericentromeric region of chromosome 9,” Human Genetics, vol. 123, no. 3, pp. 267–272, 2008.
[16]
W. Chen, N. C. Meyer, M. J. Mckenna et al., “Single-nucleotide polymorphisms in the COL1A1 regulatory regions are associated with otosclerosis,” Clinical Genetics, vol. 71, no. 5, pp. 406–414, 2007.
[17]
I. Schrauwen, M. Thys, K. Vanderstraeten et al., “Association of bone morphogenetic proteins with otosclerosis,” Journal of Bone and Mineral Research, vol. 23, no. 4, pp. 507–516, 2008.
[18]
M. Thys, I. Schrauwen, K. Vanderstraeten et al., “The coding polymorphism T263I in TGF-β1 is associated with otosclerosis in two independent populations,” Human Molecular Genetics, vol. 16, no. 17, pp. 2021–2030, 2007.
[19]
I. Schrauwen, M. Ealy, M. J. Huentelman et al., “A Genome-wide analysis identifies genetic variants in the RELN gene associated with otosclerosis,” American Journal of Human Genetics, vol. 84, no. 3, pp. 328–338, 2009.
[20]
P. Csomor, I. Sziklai, and T. Karosi, “TNF-α receptor expression correlates with histologic activity of otosclerosis,” Otology and Neurotology, vol. 30, no. 8, pp. 1131–1137, 2009.