Previous experiments suggested the possibility of a short-term sound stimulus-evoked and transient increase in DPOAE amplitudes. This phenomenon is possibly due to the complexity of the outer hair cells and their efferent control system and the different time scales of regulatory processes. A total of 100 healthy subjects ranging from 18 to 40 years of age with normal hearing and normal DPOAE values in the range of 781–4000?Hz were recruited in the study. Diagnostic DPOAE measurements were performed after short-term sound exposure. We proposed a 10?sec, 50?dB sound impulse as the most effective stimulus for clinical practice between 40 and 60?sec poststimulus time to detect the aforementioned transient DPOAE increase. We developed a procedure for detection of this transient increase in DPOAE by the application of a short-term sound exposure. The phenomenon was consistent and well detectable. Based on our findings, a new aspect of cochlear adaptation can be established that might be introduced as a routine clinical diagnostic tool. A mathematical model was provided that summarizes various factors that determine electromotility of OHCs and serves as a possible clinical application using this phenomenon for the prediction of individual noise susceptibility. 1. Introduction The outer hair cells play a crucial role in the mammalian cochlea. These cells are part of a complex system that is necessary to detect low intensity sounds as well as to provide a self-defense against high intensity sounds [1]. In the mammalian cochlea, there is a complex mechanism, also known as cochlear amplification that provides the capability of detecting sounds of threshold intensity. Otoacoustic emission is also the result of active outer hair cell (OHC) motility, also known as electromotility [2–4]. Beyond the fast motility of OHCs (electromotility), these cells also exhibit an additional slow change in cell shape (slow motility). Slow motility is presented by cell shortening, which is assumed to play a protective role against loud sounds [5–9]. The slow motility of OHCs can modify the axial and lateral wall stiffness of cells decreasing the magnitude of their electromotile responses [7–9]. The slow motility of OHCs and the resultant cell stiffness changes can be considered as an intrinsic regulatory mechanism of OHCs. This mechanism is mechanically evoked, and it is independent from electromotility but depends on the presence and concentration of [Ca2+]i and is also linked to the metabolic modification of cytoskeletal structure [7–10]. Furthermore, the axial and lateral wall
References
[1]
A. W. Gummer, J. Meyer, G. Frank, M. P. Scherer, and S. Preyer, “Mechanical transduction in outer hair cells,” Audiology and Neuro-Otology, vol. 7, no. 1, pp. 13–16, 2002.
[2]
D. T. Kemp, “Stimulated acoustic emissions from within the human auditory system,” Journal of the Acoustical Society of America, vol. 64, no. 5, pp. 1386–1391, 1978.
[3]
W. E. Brownell, “Outer hair cell electromotility and otoacoustic emissions,” Ear and Hearing, vol. 11, no. 2, pp. 82–92, 1990.
[4]
P. Dallos, “Cochlear amplification, outer hair cells and prestin,” Current Opinion in Neurobiology, vol. 18, no. 4, pp. 370–376, 2008.
[5]
D. Dulon, G. Zajic, and J. Schacht, “Differential motile response of isolated inner and outer hair cells to stimulation by potassium and calcium ions,” Hearing Research, vol. 52, no. 1, pp. 225–232, 1991.
[6]
D. Z. Z. He and P. Dallos, “Somatic stiffness of cochlear outer hair cells is voltage-dependent,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 14, pp. 8223–8228, 1999.
[7]
T. J. Batta, G. Panyi, R. Gáspár, and I. Sziklai, “Active and passive behaviour in the regulation of stiffness of the lateral wall in outer hair cells of the guinea-pig,” Pflugers Archiv, vol. 447, no. 3, pp. 328–336, 2003.
[8]
R. Borkó, T. J. Batta, and I. Sziklai, “Electromotile performance of isolated outer hair cells during slow motile shortening,” Acta Oto-Laryngologica, vol. 125, no. 5, pp. 547–551, 2005.
[9]
R. Borkó, T. J. Batta, and I. Sziklai, “Slow motility, electromotility and lateral wall stiffness in the isolated outer hair cells,” Hearing Research, vol. 207, no. 1-2, pp. 68–75, 2005.
[10]
M. Sz?nyi, D. Z. Z. He, O. Ribári, I. Sziklai, and P. Dallos, “Intracellular calcium and outer hair cell electromotility,” Brain Research, vol. 922, no. 1, pp. 65–70, 2001.
[11]
T. Ren and A. L. Nuttall, “Extracochlear electrically evoked otoacoustic emissions: a model for in vivo assessment of outer hair cell electromotility,” Hearing Research, vol. 92, no. 1-2, pp. 178–183, 1995.
[12]
G. I. Frolenkov, F. Mammano, and B. Kachar, “Regulation of outer hair cell cytoskeletal stiffness by intracellular Ca2+: underlying mechanism and implications for cochlear mechanics,” Cell Calcium, vol. 33, no. 3, pp. 185–195, 2003.
[13]
J. G. Kiss, F. Tóth, L. Rovó et al., “Distortion-product otoacoustic emission (DPOAE) following pure tone and wide-band noise exposures,” Scandinavian Audiology, Supplement, vol. 30, no. 52, pp. 138–140, 2001.
[14]
C. Abel, A. Wittekindt, and M. K?ssl, “Contralateral acoustic stimulation modulates low-frequency biasing of DPOAE: efferent influence on cochlear amplifier operating state?” Journal of Neurophysiology, vol. 101, no. 5, pp. 2362–2371, 2009.
[15]
D. O. Kim, P. A. Dorn, S. T. Neely, and M. P. Gorga, “Adaptation of distortion product otoacoustic emission in humans,” Journal of the Association for Research in Otolaryngology, vol. 2, no. 1, pp. 31–40, 2001.
[16]
M. K. Bassim, R. L. Miller, E. Buss, and D. W. Smith, “Rapid adaptation of the 2f1-f2 DPOAE in humans: binaural and contralateral stimulation effects,” Hearing Research, vol. 182, no. 1-2, pp. 140–152, 2003.
[17]
H. Althen, A. Wittekindt, B. Gaese, M. K?ssl, and C. Abel, “Effect of contralateral pure tone stimulation on distortion emissions suggests a frequency-specific functioning of the efferent cochlear control,” Journal of Neurophysiology, vol. 107, no. 7, pp. 1962–1969, 2012.
[18]
T.-C. Liu, C.-J. Hsu, J.-H. Hwang, F.-Y. Tseng, and Y.-S. Chen, “Effects of alcohol and noise on temporary threshold shift in guinea pigs,” ORL, vol. 66, no. 3, pp. 124–129, 2004.
[19]
G. D. Housley and J. F. Ashmore, “Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea,” Proceedings of the Royal Society B, vol. 244, no. 1310, pp. 161–167, 1991.
[20]
P. A. Fuchs and B. W. Murrow, “A novel cholinergic receptor mediates inhibition of chick cochlear hair cells,” Proceedings of the Royal Society B, vol. 248, no. 1, pp. 35–40, 1992.
[21]
W. Zhao and S. Dhar, “Fast and slow effects of medial olivocochlear efferent activity in humans,” PLoS One, vol. 6, no. 4, Article ID e18725, 2011.
[22]
D. Dulon and J. Schacht, “Motility of cochlear outer hair cells,” American Journal of Otology, vol. 13, no. 2, pp. 108–112, 1992.
[23]
T. J. Batta, G. Panyi, A. Szucs, and I. Sziklai, “Regulation of the lateral wall stiffness by acetylcholine and GABA in the outer hair cells of the guinea pig,” European Journal of Neuroscience, vol. 20, no. 12, pp. 3364–3370, 2004.
[24]
B. L. Lonsbury-Martin and G. K. Martin, “Distortion-product otoacoustic emission in populations with normal hearing sensitivity—measurement of DPOAE,” in Otoacoustic Emissions Clinical Applications, M. S. Robinette and T. J. Glattke, Eds., Thieme, Stuttgart, Germany, 2007.
[25]
A. B. Elgoyhen and E. Katz, “The efferent medial olivocochlear-hair cell synapse,” Journal of Physiology Paris, vol. 106, pp. 47–56, 2012.
[26]
T. S. Sridhar, M. C. Brown, and W. F. Sewell, “Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales,” Journal of Neuroscience, vol. 17, no. 1, pp. 428–437, 1997.
[27]
N. P. Cooper and J. J. Guinan Jr., “Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity,” Journal of Physiology, vol. 548, no. 1, pp. 307–312, 2003.
[28]
F. Mammano, M. Bortolozzi, S. Ortolano, and F. Anselmi, “Ca2+ signaling in the inner ear,” Physiology, vol. 22, no. 2, pp. 131–144, 2007.
[29]
H. Spoendlin, “The innervation of the organ of Corti,” Journal of Laryngology and Otology, vol. 81, no. 7, pp. 717–738, 1967.
[30]
P. E. Stopp and S. D. Comis, “Afferent and efferent innervation of the guinea-pig cochlea: a light microscopic and histochemical study,” Neuroscience, vol. 3, no. 12, pp. 1197–1206, 1978.
[31]
S. F. Maison, T. W. Rosahl, G. E. Homanics, and M. C. Liberman, “Functional role of GABAergic innervation of the cochlea: phenotypic analysis of mice lacking GAB receptor subunits α1, α2, α5, α6, β2, β3, or δ,” Journal of Neuroscience, vol. 26, no. 40, pp. 10315–10326, 2006.
[32]
M. Eybalin and R. A. Altschuler, “Immunoelectron microscopic localization of neurotransmitters in the cochlea,” Journal of Electron Microscopy Technique, vol. 15, no. 3, pp. 209–224, 1990.
[33]
M. Eybalin, C. Parnaud, M. Geffard, and R. Pujol, “Immunoelectron microscopy identifies several types of GABA-containing efferent synapses in the guinea-pig organ of Corti,” Neuroscience, vol. 24, no. 1, pp. 29–38, 1988.
[34]
P. K. Plinkert, H. Mohler, and H. P. Zenner, “A subpopulation of outer hair cells possessing GABA receptors with tonotopic organization,” Archives of Oto-Rhino-Laryngology, vol. 246, no. 6, pp. 417–422, 1989.