全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influence of Body Position on Severity of Obstructive Sleep Apnea: A Systematic Review

DOI: 10.1155/2013/670381

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aim. The aim of this review is to determine the relationship between sleeping body posture and severity of obstructive sleep apnea. This relationship has been investigated in the past. However, the conclusions derived from some of these studies are conflicting with each other. This paper intends to summarize the reported relationships between sleep posture and various sleep indices in patients diagnosed with sleep apnea. Methods and Materials. A systematic review of the published English literature during a 25-year period from 1983 to 2008 was performed. Results. Published data concerning the sleep apnea severity and posture in adults are limited. Supine sleep posture is consistently associated with more severe obstructive sleep apnea indices in adults. However, relationship between sleep apnea severity indices and prone posture is inconsistent. 1. Background A few prior studies have addressed the relationship between body posture and sleep apnea. It has been observed that the avoidance of supine position leads to a decrease in the number and severity of obstructive episodes [1, 2]. In supine posture, the upper airway caliber and resistance are greater [3, 4]. Also, the tendency for the upper airway to collapse further is greater in supine position compared to lateral position [5, 6]. In patients with mild obstructive sleep apnea, symptomatic improvement may be achieved, simply by avoiding supine posture during sleep. In some patients, avoiding supine position while sleeping may be the only treatment required [7]. Some previously published studies have classified OSA patients into two groups: positional and nonpositional [8]. Positional patients are those in whom the respiratory disturbance index was more than twice as high in the supine position as it was in the lateral position. Nonpositional patients are those in whom supine RDI was less than two times higher than the lateral RDI. The prevalence of positional patients among those with OSA varies from 9% to 60% [9–12]. In general, positional patients are thinner and younger and have less severe breathing abnormality indices compared to nonpositional patients. Also, patients with positional sleep apnea have smaller neck circumference and spend more time in the supine posture as a percentage of total sleep time [13]. Positional sleep apnea was reported as significantly more common when sleep apnea was mild than when it was moderate or severe [12, 13]. The optimal CPAP pressures required for positional patients were significantly lower than that for nonpositional patients [14]. The effect of prone sleep

References

[1]  R. D. Cartwright, “Effect of sleep position on sleep apnea severity,” Sleep, vol. 7, no. 2, pp. 110–114, 1984.
[2]  R. D. Cartwright, S. Lloyd, J. Lilie, and H. Kravitz, “Sleep position training as treatment for sleep apnea syndrome: a preliminary study,” Sleep, vol. 8, no. 2, pp. 87–94, 1985.
[3]  A. M. Anch, J. E. Remmers, and H. Bunce III, “Supraglottic airway resistance in normal subjects and patients with occlusive sleep apnea,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 53, no. 5, pp. 1158–1163, 1982.
[4]  M. Tvinnereim, P. Cole, S. Mateika, J. Haight, and V. Hoffstein, “Postural changes in respiratory airflow pressure and resistance in nasal, hypopharyngeal, and pharyngeal airway in normal subjects,” Annals of Otology, Rhinology and Laryngology, vol. 105, no. 3, pp. 218–221, 1996.
[5]  F. G. Issa and C. E. Sullivan, “Upper airway closing pressures in obstructive sleep apnea,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 57, no. 2, pp. 520–527, 1984.
[6]  A. M. Neill, S. M. Angus, D. Sajkov, and R. D. McEvoy, “Effects of sleep posture on upper airway stability in patients with obstructive sleep apnea,” American Journal of Respiratory and Critical Care Medicine, vol. 155, no. 1, pp. 199–204, 1997.
[7]  N. B. Kavey, A. Blitzer, S. Gidro-Frank, and K. Korstanje, “Sleeping position and sleep apnea syndrome,” American Journal of Otolaryngology, vol. 6, no. 5, pp. 373–377, 1985.
[8]  A. Oksenberg, I. Khamaysi, D. S. Silverberg, and A. Tarasiuk, “Association of body position with severity of apneic events in patients with severe nonpositional obstructive sleep apnea,” Chest, vol. 118, no. 4, pp. 1018–1024, 2000.
[9]  S. R. Lloyd and R. D. Cartwright, “Physiologic basis of therapy for sleep apnea,” American Review of Respiratory Disease, vol. 136, no. 2, pp. 525–526, 1987.
[10]  C. F. George, T. W. Millar, and M. H. Kryger, “Sleep apnea and body position during sleep,” Sleep, vol. 11, no. 1, pp. 90–99, 1988.
[11]  A. Oksenberg, D. S. Silverberg, E. Arons, and H. Radwan, “The sleep supine position has a major effect on optimal nasal continuous positive airway pressure: relationship with rapid eye movements and nonrapid eye movements sleep, body mass index, respiratory disturbance index, and age,” Chest, vol. 116, no. 4, pp. 1000–1006, 1999.
[12]  W. Richard, D. Kox, C. Den Herder, M. Laman, H. Van Tinteren, and N. De Vries, “The role of sleep position in obstructive sleep apnea syndrome,” European Archives of Oto-Rhino-Laryngology, vol. 263, no. 10, pp. 946–950, 2006.
[13]  M. J. Mador, T. J. Kufel, U. J. Magalang, S. K. Rajesh, V. Watwe, and B. J. B. Grant, “Prevalence of positional sleep apnea in patients undergoing polysomnography,” Chest, vol. 128, no. 4, pp. 2130–2137, 2005.
[14]  D. A. Pevernagie and J. W. Shepard Jr., “Relations between sleep stage, posture and effective nasal CPAP levels in OSA,” Sleep, vol. 15, no. 2, pp. 162–167, 1992.
[15]  D. A. Pevernagie, A. W. Stanson, P. F. Sheedy II, B. K. Daniels, and J. W. Shepard Jr., “Effects of body position on the upper airway of patients with obstructive sleep apnea,” American Journal of Respiratory and Critical Care Medicine, vol. 152, no. 1, pp. 179–185, 1995.
[16]  I. B. Brown, P. A. McClean, R. Boucher, N. Zamel, and V. Hoffstein, “Changes in pharyngeal cross-sectional area with posture and application of continuous positive airway pressure in patients with obstructive sleep apnea,” American Review of Respiratory Disease, vol. 136, no. 3, pp. 628–632, 1987.
[17]  N. Yildirim, M. F. Fitzpatrick, K. F. Whyte, R. Jalleh, A. J. A. Wightman, and N. J. Douglas, “The effect of posture on upper airway dimensions in normal subjects and in patients with the sleep apnea/hypopnea syndrome,” American Review of Respiratory Disease, vol. 144, no. 4, pp. 845–847, 1991.
[18]  A. Oksenberg and D. S. Silverberg, “The effect of body posture on sleep-related breathing disorders: facts and therapeutic implications,” Sleep Medicine Reviews, vol. 2, no. 3, pp. 139–162, 1998.
[19]  J. C. Leiter, “Upper airway shape. Is it important in the pathogenesis of obstructive sleep apnea?” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 3, pp. 894–898, 1996.
[20]  D. W. Hudgel and P. Devadatta, “Decrease in functional residual capacity during sleep in normal humans,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 57, no. 5, pp. 1319–1322, 1984.
[21]  K. D. Pereira, J. C. Roebuck, and L. Howell, “The effect of body position on sleep apnea in children younger than 3 years,” Archives of Otolaryngology, vol. 131, no. 11, pp. 1014–1016, 2005.
[22]  C. Cuhadaroglu, N. Keles, B. Erdamar et al., “Body position and obstructive sleep apnea syndrome,” Pediatric Pulmonology, vol. 36, no. 4, pp. 335–338, 2003.
[23]  Y. Akita, K. Kawakatsu, C. Hattori, H. Hattori, K. Suzuki, and T. Nishimura, “Posture of patients with sleep apnea during sleep,” Acta Oto-Laryngologica, Supplement, no. 550, pp. 41–45, 2003.
[24]  L. B. F. do Prado, X. Li, R. Thompson, and C. L. Marcus, “Body position and obstructive sleep apnea in children,” Sleep, vol. 25, no. 1, pp. 66–71, 2002.
[25]  Y. Matsuzawa, S. Hayashi, S. Yamaguchi et al., “Effect of prone position on apnea severity in obstructive sleep apnea,” Internal Medicine, vol. 34, no. 12, pp. 1190–1193, 1995.
[26]  R. D. Cartwright, F. Diaz, and S. Lloyd, “The effects of sleep posture and sleep stage on apnea frequency,” Sleep, vol. 14, no. 4, pp. 351–353, 1991.
[27]  H. Miki, W. Hida, Y. Kikuchi, and T. Takishima, “Effect of sleep position on obstructive sleep apnea,” Tohoku Journal of Experimental Medicine, vol. 156, supplement, pp. 143–149, 1988.
[28]  B. A. Chaudhary, T. K. Chaudhary, R. C. Kolbeck, J. D. Harmon, and W. A. Speir Jr., “Therapeutic effect of posture in sleep apnea,” Southern Medical Journal, vol. 79, no. 9, pp. 1061–1063, 1986.
[29]  S. Isono, A. Shimada, M. Utsugi, A. Konno, and T. Nishino, “Comparison of static mechanical properties of the passive pharynx between normal children and children with sleep-disordered breathing,” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 4, part 1, pp. 1204–1212, 1998.
[30]  F. Series, Y. Cormier, and M. Desmeules, “Influence of passive changes of lung volume on upper airways,” Journal of Applied Physiology, vol. 68, no. 5, pp. 2159–2164, 1990.
[31]  T. Ishikawa, S. Isono, J. Aiba, A. Tanaka, and T. Nishino, “Prone position increases collapsibility of the passive pharynx in infants and small children,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 5, pp. 760–764, 2002.
[32]  R. S. Litman, N. Wake, L.-M. L. Chan et al., “Effect of lateral positioning on upper airway size and morphology in sedated children,” Anesthesiology, vol. 103, no. 3, pp. 484–488, 2005.
[33]  B. T. Thach and A. R. Stark, “Spontaneous neck flexion and airway obstruction during apneic spells in preterm infants,” Journal of Pediatrics, vol. 94, no. 2, pp. 275–281, 1979.
[34]  S. Isono, A. Tanaka, and T. Nishino, “Lateral position decreases collapsibility of the passive pharynx in patients with obstructive sleep apnea,” Anesthesiology, vol. 97, no. 4, pp. 780–785, 2002.
[35]  T. Penzel, M. M?ller, H. F. Becker, L. Knaack, and J.-H. Peter, “Effect of sleep position and sleep stage on the collapsibility of the upper airways in patients with sleep apnea,” Sleep, vol. 24, no. 1, pp. 90–95, 2001.
[36]  A. Boudewyns, N. Punjabi, P. H. Van de Heyning et al., “Abbreviated method for assessing upper airway function in obstructive sleep apnea,” Chest, vol. 118, no. 4, pp. 1031–1041, 2000.
[37]  H. Smith and L. Fortin, “Positional effect in obstructive and central sleep apnea,” Journal of Sleep Research, vol. 14, article 210, 1985.
[38]  R. D. Cartwright and C. F. Samelson, “The effects of a nonsurgical treatment for obstructive sleep apnea. The tongue-retaining device,” Journal of the American Medical Association, vol. 248, no. 6, pp. 705–709, 1982.
[39]  S. Tsuiki, F. R. Almeida, P. S. Bhalla, A. A. Lowe, and J. A. Fleetham, “Supine-dependent changes in upper airway size in awake obstructive sleep apnea patients,” Sleep and Breathing, vol. 7, no. 1, pp. 43–50, 2003.
[40]  J. M. Battagel, A. Johal, A.-M. Smith, and B. Kotecha, “Postural variation in oropharyngeal dimensions in subjects with sleep disordered breathing: a cephalometric study,” European Journal of Orthodontics, vol. 24, no. 3, pp. 263–276, 2002.
[41]  R. Jokic, A. Klimaszewski, M. Crossley, G. Sridhar, and M. F. Fitzpatrick, “Positional treatment vs continuous positive airway pressure in patients with positional obstructive sleep apnea syndrome,” Chest, vol. 115, no. 3, pp. 771–781, 1999.
[42]  A. Oksenberg, D. S. Silverberg, E. Arons, and H. Radwan, “Positional vs nonpositional obstructive sleep apnea patients: anthropomorphic, nocturnal polysomnographic, and multiple sleep latency test data,” Chest, vol. 112, no. 3, pp. 629–639, 1997.
[43]  M. L. Metersky and R. J. Castriotta, “The effect of polysomnography on sleep position: possible implications on the diagnosis of positional obstructive sleep apnea,” Respiration, vol. 63, no. 5, pp. 283–287, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133