全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sound Sensitivity of the Saccule for Low Frequencies in Healthy Adults

DOI: 10.1155/2013/429680

Full-Text   Cite this paper   Add to My Lib

Abstract:

Approximately 80 years ago John Tait speculated about a possible auditory role for the otolith organs in humans those days, there was no direct evidence for that idea. This time is for us to review and research. Then, the objective of our study was to investigate saccular hearing in healthy adults. We selected twenty healthy controls and twenty-four dizzy cases. Assessment comprised of audiologic evaluations, cervical vestibular evoked myogenic potentials (cVEMPs), and recognition of spoken phonemes in white noise (Rsp in wn). In the case group (a total of 48 ears), the cVEMPs abnormalities were all unilateral (24 affected ears and 24 contralateral unaffected ears). Affected ears with decreased vestibular excitability as detected by abnormal cVEMPs had decreased Rsp in wn ( ), whereas both unaffected ( ) and control ears ( ) presented normal results. The correlation between RSP in wn and p13 latencies was significant ( , ). The peak-to-peak amplitudes showed significant correlation to RSP in wn ( , ). The correlation between RSP in wn and the latencies of n23 was significant ( , ). We concluded in presence of severe competing noise, saccule has a facilitating role for cochlea and can improve to detection of loud low-frequencies. 1. Introduction There are afferent fibers in the vestibular nerve of amniotes (reptiles, birds, and mammals) that respond to sound at levels within the normal range of hearing. The ascending auditory pathway (inner ear, cochlear nucleus, medulla, midbrain, thalamus, and cerebrum) of amniotes is organized similarly to those of anamniotes (fish and amphibians). Convergent neuroanatomical specializations in two species may reflect common functional requirements [1, 2]. These structures have retained sound sensitivity in man and primates [3, 4]. Intense air-conducted stimulations with low frequencies (between 50 and 800 Hz) may evoke the continuous responses in the human saccular neurons. The range of acoustic sensitivity of the sacculus happens to coincide with the range of voice pitch, for male voices between 80 and 200?Hz and up to 400?Hz for females. Also, the first formant of our voice falls within the range of saccular sensitivity [4–6]. Thus, given the proximity of the ear to the larynx, it is possible that saccular responses may be obtained to an individual’s own vocalisations, particularly for singing. Another possibility is that responses are obtained when there are large groups of individuals vocalising together, such as in a choir or a crowd at a concert or sporting event [6–8]. On the other hand, most acoustically

References

[1]  C. A. McCormick, “Central connections of anamniote auditory otolithendorgans,” Journal of the Acoustical Society of America, vol. 119, no. 5, p. 3432, 2006.
[2]  T. Murofushi and K. Kaga, “Sound sensitivity of the vestibular end-organs and sound evoked vestibulocollic reflexes in mammals,” in Vestibular Evoked Myogenic Potential, T. Murofushi and K. Kaga, Eds., pp. 20–22, Nikkei Printing Inc, Aichi, Japan; Springer, Berlin, Germany, 2009.
[3]  J. G. Colebatch, “Assessing saccular, (otolith) function in man,” Journal of the Acoustical Society of America, vol. 119, no. 5, p. 3432, 2006.
[4]  K. Sheykholeslami and K. Kaga, “The otolithic organ as a receptor of vestibular hearing revealed by vestibular-evoked myogenic potentials in patients with inner ear anomalies,” Hearing Research, vol. 165, no. 1-2, pp. 62–67, 2002.
[5]  G. P. Jacobson and D. L. Mccaslin, “The vestibular evoked myogenic potential and other sonomotor evoked potentials,” in Auditory Evoked Potentials Basic Principles and Clinical Application, R. F. Burkard, J. J. Eggermont, and M. Don, Eds., pp. 572–598, Lippincott Williams & Wilkins, Baltimore, Md, USA, 2007.
[6]  N. P. M. Todd, F. W. J. Cody, and J. R. Banks, “A saccular origin of frequency tuning in myogenic vestibular evoked potentials?: implications for human responses to loud sounds,” Hearing Research, vol. 141, no. 1-2, pp. 180–188, 2000.
[7]  N. Todd, “Evidence for a behavioral significance of saccular acoustic sensitivity in humans,” Journal of the Acoustical Society of America, vol. 110, no. 1, pp. 380–390, 2001.
[8]  N. P. M. Todd and F. W. Cody, “Vestibular responses to loud dance music: a physiological basis of the rock and roll threshold?” Journal of the Acoustical Society of America, vol. 107, no. 1, pp. 496–500, 2000.
[9]  J. J. Guinan, “Acoustically responsive fibers in the mammalian vestibular nerve,” Journal of the Acoustical Society of America, vol. 119, pp. 3433–3434, 2006.
[10]  K. M. McNerney, A. H. Lockwood, M. L. Coad, D. S. Wack, and R. F. Burkard, “Use of 64-channel electroencephalography to study neural otolith-evoked responses,” Journal of the American Academy of Audiology, vol. 22, no. 3, pp. 143–155, 2011.
[11]  N. T. Shepard, “Evaluation and management of balance system disorders,” in Issues in Hand Book of Clinical Audiology, J. Katz, Ed., vol. 5, pp. 407–390, Lippincott Williams & Wilkins, Baltimore, Md, USA, 2002.
[12]  G. Akkuzu, B. Akkuzu, and L. N. Ozluoglu, “Vestibular evoked myogenic potentials in benign paroxysmal positional vertigo and Meniere's disease,” European Archives of Oto-Rhino-Laryngology, vol. 263, no. 6, pp. 510–517, 2006.
[13]  R. W. Harrell, “Pure tone evaluation,” in Hand Book of Clinical Audiology, J. Katz, L. Medwetsky, and R. Burkard, Eds., pp. 71–88, Lippincott Williams & Wilkins, New York, NY, USA, 5rd edition, 2002.
[14]  C. G. Fowllff and E. G. Shanks, “Tmpanometry,” in Hand Book of Clinical Audiology, J. Katz, L. Medwetsky, and R. Burkard, Eds., pp. 175–204, Lippincott Williams & Wilkins, New York, NY, USA, 5rd edition, 2002.
[15]  S. A. Gelfand, “The acoustic reflex,” in Hand Book of Clinical Audiology, J. Katz, L. Medwetsky, R. Burkard, and L. J. Hood, Eds., pp. 189–221, Lippincott Williams & Wilkins, New York, NY, USA, 6rd edition, 2009.
[16]  W. T. Brandy, “Speech audiometry,” in Hand Book of Clinical Audiology, J. Katz, L. Medwetsky, R. Burkard, and L. J. Hood, Eds., pp. 96–109, Lippincott williams & wilkins, New York, NY, USA, 6rd edition, 2009.
[17]  J. W. Hall III, “Electrically evoked and myogenic responses,” in New Handbook of Auditory Evoked Responses, J. W. Hall III, S. D. Dragin, K. Heimsoth, and J. Sweeney, Eds., pp. 602–613, Pearson Education, Boston, Mass, USA, 2007.
[18]  Y. I. Fishman and M. Steinschneider, “Formation of auditory streams,” in Issues in the Oxford Handbook of Auditory Science the Auditory Brain, A. Rees, Ed., pp. 215–245, Oxford University Press, New York, NY, USA, 2010.
[19]  S. K. Scott and D. G. Sinex, “Speecheditors,” in The Oxford Handbook of Auditory Science the Auditory Brain Volume 2, A. Rees and A. R. Palmer, Eds., pp. 193–215, Oxford University Press, New York, NY, USA, 2010.
[20]  E. D. Young, “Level and spectrum,” in Issues in the Oxford Handbook of Auditory Science the Auditory Brain, A. Rees, Ed., pp. 93–124, Oxford University Press, New York, NY, USA, 2010.
[21]  R. Burkard and S. Secor, “Overview of auditory evoked potentials,” in Issues in Hand Book of Clinical Audiology, J. Katz, Ed., vol. 3, pp. 233–249, Lippincott Williams & Wilkins, Baltimore, Md, USA, 6th edition, 2002.
[22]  S. K. Scott and D. G. Sinex, “Speecheditors,” in The Oxford Handbook of Auditory Science the Auditory Brain Volume 2, A. Rees and A. R. Palmer, Eds., pp. 193–215, Oxford University Press, New York, NY, USA, 2010.
[23]  S. F. Emami, A. Pourbakht, K. Sheykholesl?mi, M. Kammali, F. Behnoud, and A. Daneshi, “Vestibular hearing and speech processing,” ISRN Otolaryngology, vol. 2012, Article ID 850629, 7 pages, 2012.
[24]  B. Malone and C. E. Schreiner, “Time-varying sounds: amplitude envelope modulations,” in The Oxford Handbook of Auditory Science the Auditory Brain Volume 2, A. Rees and A. R. Palmer, Eds., pp. 125–149, Oxford University Press, New York, NY, USA, 2010.
[25]  S. F. Emami and A. Daneshi, “Vestibular hearing and neural synchronization,” ISRN Otolaryngology, vol. 2012, Article ID 246065, 5 pages, 2012.
[26]  J. J. Rosowski, “External and middle ear function,” in The Oxford Handbook of Auditory Science, the Ear, Volume 1, P. A. Fuchs, Ed., pp. 49–92, Oxford University Press, New York, NY, USA, 2010.
[27]  M. Trivelli, M. Potena, V. Frari, T. Petitti, V. Deidda, and F. Salvinelli, “Compensatory role of saccule in deaf children and adults: novel hypotheses,” Medical Hypotheses, vol. 80, no. 1, pp. 43–46, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133