全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Relationship between Personality Type and Acceptable Noise Levels: A Pilot Study

DOI: 10.1155/2013/902532

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objectives. This study examined the relationship between acceptable noise level (ANL) and personality. ANL is the difference between a person’s most comfortable level for speech and the loudest level of background noise they are willing to accept while listening to speech. Design. Forty young adults with normal hearing participated. ANLs were measured and two personality tests (Big Five Inventory, Myers-Briggs Type Indicator) were administered. Results. The analysis revealed a correlation between ANL and the openness and conscientious personality dimensions from the Big Five Inventory; no correlation emerged between ANL and the Myers-Briggs personality types. Conclusions. Lower ANLs are correlated with full-time hearing aid use and the openness personality dimension; higher ANLs are correlated with part-time or hearing aid nonuse and the conscientious personality dimension. Current data suggest that those more open to new experiences may accept more noise and possibly be good hearing aid candidates, while those more conscientious may accept less noise and reject hearing aids, based on their unwillingness to accept background noise. Knowing something about a person’s personality type may help audiologists determine if their patients will likely be good candidates for hearing aids. 1. Background Many factors may influence a person’s success with hearing aids, for example, sound processing by the aid and the presence of background noise. However, the factors that underlie the hearing aid wearer’s perception of success and benefit are not fully understood. For example, Hutchinson et al. [1] reported that two people with the same type and degree of hearing loss and no prior experience with hearing aids can perceive hearing aid benefit differently. To clinically assess patients’ perceptions of hearing aid benefit, the subjective Client Oriented Scale of Improvement (COSI [2]) and the Abbreviated Profile of Hearing Aid Benefit (APHAB [3]) have been available for over 15 years and are widely used by audiologists. Other research has focused on clinical variables that can be manipulated such as counseling, the fitting process, type of hearing aid, compression circuitry, and other hearing instrument adjustments. While these modifications can help give wearers more objectively measureable benefit with hearing aids, there are still some who feel that they never achieve success with hearing aids [4–6]. In light of such research findings, it seems reasonable to think there may be as yet unidentified wearer-related variables that affect a person’s perceived

References

[1]  K. M. Hutchinson, T. L. Duffy, and L. J. Kelly, “How personality types correlate with hearing aid outcome measures,” Hearing Journal, vol. 58, no. 7, pp. 28–34, 2005.
[2]  H. Dillon, A. James, and J. Ginis, “Client oriented scale of improvement (COSI) and its relationship to several other measures of benefit and satisfaction provided by hearing aids,” Journal of the American Academy of Audiology, vol. 8, no. 1, pp. 27–43, 1997.
[3]  R. M. Cox and G. C. Alexander, “The abbreviated profile of hearing aid benefit,” Ear and Hearing, vol. 16, no. 2, pp. 176–186, 1995.
[4]  S. Gatehouse, “Components and determinants of hearing aid benefit,” Ear and Hearing, vol. 15, no. 1, pp. 30–49, 1994.
[5]  R. M. Cox, G. C. Alexander, and G. Gray, “Personality and the subjective assessment of hearing aids,” Journal of the American Academy of Audiology, vol. 10, no. 1, pp. 1–13, 1999.
[6]  D. R. Cunningham, K. J. Williams, and L. J. Goldsmith, “Effects of providing and withholding postfitting fine-tuning adjustments on outcome measures in novice hearing aid users: a pilot study,” The American Journal of Audiology, vol. 10, no. 1, pp. 13–23, 2001.
[7]  R. M. Traynor and K. M. Buckles, “Personality typing: audiology's new crystal ball,” High Performance Hearing Solutions, vol. 1, pp. 28–31, 1997.
[8]  E. K. Barry and P. McCarthy, “The relationship between personality type and perceived hearing aid benefit,” Hearing Journal, vol. 54, no. 9, pp. 41–46, 2001.
[9]  S. Kochkin, D. L. Beck, L. A. Christensen, et al., “MarkeTrak VIII: the impact of the hearing healthcare professional on hearing aid user success: correlations between dispensing protocols and successful patient outcomes,” The Hearing Review, vol. 17, no. 4, pp. 12–34, 2010.
[10]  A. K. Nabelek, F. M. Tucker, and T. R. Letowski, “Toleration of background noises: relationship with patterns of hearing aid use by elderly persons,” Journal of Speech and Hearing Research, vol. 34, no. 3, pp. 679–685, 1991.
[11]  M. C. Freyaldenhoven, D. F. Smiley, R. A. Muenchen, and T. N. Konrad, “Acceptable noise level: reliability measures and comparison to preference for background sounds,” Journal of the American Academy of Audiology, vol. 17, no. 9, pp. 640–648, 2006.
[12]  A. K. Nabelek, M. C. Freyaldenhoven, J. W. Tampas, S. Burchfield, and R. A. Muenchen, “Acceptable noise level as a predictor of hearing aid use,” Journal of the American Academy of Audiology, vol. 17, no. 9, pp. 626–639, 2006.
[13]  D. S. Rogers, A. W. Harkrider, S. B. Burchfield, and A. K. Nabelek, “The influence of listener's gender on the acceptance of background noise,” Journal of the American Academy of Audiology, vol. 14, no. 7, pp. 372–382, 2003.
[14]  M. C. Freyaldenhoven and D. F. Smiley, “Acceptance of background noise in children with normal hearing,” Journal of Educational Audiology, vol. 13, pp. 27–31, 2006.
[15]  D. von Hapsburg and J. Bahng, “Acceptance of background noise levels in bilingual (Korean-English) listeners,” Journal of the American Academy of Audiology, vol. 17, no. 9, pp. 649–658, 2006.
[16]  A. K. Nabelek, J. W. Tampas, and S. B. Burchfield, “Comparison of speech perception in background noise with acceptance of background noise in aided and unaided conditions,” Journal of Speech, Language, and Hearing Research, vol. 47, no. 5, pp. 1001–1011, 2004.
[17]  H. G. Mueller, J. Weber, and B. W. Y. Hornsby, “The effects of digital noise reduction on the acceptance of background noise,” Trends in Amplification, vol. 10, no. 2, pp. 83–93, 2006.
[18]  Y. Wu and E. Stangl, “The effect of hearing aid signal-processing schemes on acceptable noise levels: perception and prediction,” Ear and Hearing, vol. 34, no. 3, pp. 333–341, 2012.
[19]  M. C. Freyaldenhoven, A. K. Nabelek, and J. W. Tampas, “Relationship between acceptable noise level and the abbreviated profile of hearing aid benefit,” Journal of Speech, Language, and Hearing Research, vol. 51, no. 1, pp. 136–146, 2008.
[20]  M. R. Barrick and M. K. Mount, “The big five personality dimensions and job performance: a meta-analysis,” Personnel Psychology, vol. 44, pp. 1–26, 1991.
[21]  S. A. Waskel and J. Coleman, “Correlations of temperament types, intensity of crisis at midlife with scores on a death scale,” Psychological Reports, vol. 68, no. 3, pp. 1187–1190, 1991.
[22]  R. G. Geen, “Preferred stimulation levels in introverts and extroverts: effects on arousal and performance,” Journal of Personality and Social Psychology, vol. 46, no. 6, pp. 1303–1312, 1984.
[23]  L. R. Goldberg, “An alternative “description of personality”: the big-five factor structure,” Journal of Personality and Social Psychology, vol. 59, no. 6, pp. 1216–1229, 1990.
[24]  O. P. John and S. Srivastava, “The big five trait taxonomy: history, measurement, and theoretical perspectives,” in Handbook of Personality: Theory and Research, L. A. Pervin and O. P. John, Eds., pp. 102–138, Guilford Press, New York, NY, USA, 2nd edition, 1999.
[25]  C. G. Jung, Psychological Types, translated by H. G. Baynes, revised by R. F. C. Hull, Princeton University Press, Princeton, NJ, USA, 1971.
[26]  L. N. Alworth, P. N. Plyler, and S. G. Madix, “Effect of personality type on the acceptance of background noise [Poster Presentation],” The University of Tennessee and Audiology, 2007.
[27]  A. C. Nichols and S. Gordon-Hickey, “The relationship of locus of control, self-control, and acceptable noise levels for young listeners with normal hearing,” International Journal of Audiology, vol. 51, no. 4, pp. 353–359, 2012.
[28]  A. K. Nabelek, “Acceptable noise level: a clinical measure for predicting hearing aid outcome,” Journal of the American Academy of Audiology, vol. 17, no. 9, pp. 624–625, 2006.
[29]  R. C. Bilger, J. M. Nuetzel, W. M. Rabinowitz, and C. Rzeczkowski, “Standardization of a test of speech perception in noise,” Journal of Speech and Hearing Research, vol. 27, no. 1, pp. 32–48, 1984.
[30]  M. Carlyn, “An assessment of the Myers-Briggs type indicator,” Journal of Personality Assessment, vol. 41, no. 5, pp. 461–473, 1977.
[31]  R. R. McCrae and P. T. Costa Jr., “Reinterpreting the Myers-Briggs Type Indicator from the perspective of the five-factor model of personality,” Journal of personality, vol. 57, no. 1, pp. 17–40, 1989.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133