全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Imaging of Electrode Position after Cochlear Implantation with Flat Panel CT

DOI: 10.5402/2012/728205

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Postoperative imaging after cochlear implantation is usually performed by conventional cochlear view (X-ray) or by multislice computed tomography (MSCT). MSCT after cochlear implantation often provides multiple metal artefacts; thus, a more detailed view of the implant considering the given anatomy is desirable. A quite new method is flat panel volume computed tomography. The aim of the study was to evaluate the method’s clinical use. Material and Methods. After cochlear implantation with different implant types, flat panel CT scan (Philips Allura) was performed in 31 adult patients. Anatomical details, positioning, and resolution of the different electrode types (MedEL, Advanced Bionics, and Cochlear) were evaluated interdisciplinary (ENT/Neuroradiology). Results. In all 31 patients cochlear implant electrode array and topographical position could be distinguished exactly. Spatial resolution and the high degree of accuracy were superior to reported results of MSCT. Differentiation of cochlear scalae by identification of the osseous spiral lamina was possible in some cases. Scanning artefacts were low. Conclusion. Flat panel CT scan allows exact imaging independent of implant type. This is mandatory for detailed information on cochlear electrode position. It enables us to perform optimal auditory nerve stimulation and allows feed back on surgical quality concerning the method of electrode insertion. 1. Introduction Postoperative imaging after cochlear implantation usually is performed by conventional cochlear view (X-ray) or by multislice computed tomography (MSCT). Conventional cochlear view is routinely used mainly in children due to short investigation time and low radiation dose. This technique only gives projective information on the fact that insertion into the cochlea has been successful, but analysis of exact electrode position with regard to the topography of the cochlea is impossible [1, 2]. MSCT after cochlear implantation allows for three-dimensional imaging; however, it unfortunately provides metal artefacts; thus, a more detailed view of the electrodes with regard to the given anatomical structures is desirable [3–5]. This is not only of major importance for quality control as far as surgical insertion methods are concerned but also with regard to special anatomic situations (e.g., mondini dysplasia, ossification of cochlea due to meningitis or otosclerosis) and fitting conditions dependent on electrode array position and results of neural response telemetry in rehabilitation. In order to gain more information on perfect design

References

[1]  C. Czerny, E. Steiner, W. Gstoettner, W. D. Baumgartner, and H. Imhof, “Postoperative radiographic assessment of the Combi 40 cochlear implant,” American Journal of Roentgenology, vol. 169, no. 6, pp. 1689–1694, 1997.
[2]  J. Xu, S. A. Xu, L. T. Cohen, and G. M. Clark, “Cochlear view: postoperative radiography for cochlear implantation,” American Journal of Otology, vol. 21, no. 1, pp. 49–56, 2000.
[3]  S. H. Bartling, R. Gupta, A. Torkos et al., “Flat-panel volume computed tomography for cochlear implant electrode array examination in isolated temporal bone specimens,” Otology and Neurotology, vol. 27, no. 4, pp. 491–498, 2006.
[4]  G. K. A. Van Wermeskerken, M. Prokop, A. F. Van Olphen, and F. W. J. Albers, “Intracochlear assessment of electrode position after cochlear implant surgery by means of multislice computer tomography,” European Archives of Oto-Rhino-Laryngology, vol. 264, no. 12, pp. 1405–1407, 2007.
[5]  R. J. Witte, J. I. Lane, C. L. W. Driscoll et al., “Pediatric and adult cochlear implantation,” Radiographics, vol. 23, no. 5, pp. 1185–1200, 2003.
[6]  R. Gupta, S. H. Bartling, S. K. Basu et al., “Experimental flat-panel high-spatial-resolution volume CT of the temporal bone,” American Journal of Neuroradiology, vol. 25, no. 8, pp. 1417–1424, 2004.
[7]  O. Majdani, S. H. Bartling, M. Leinung et al., “A true minimally invasive approach for cochlear implantation: high accuracy in cranial base navigation through flat-panel-based volume computed tomography,” Otology and Neurotology, vol. 29, no. 2, pp. 120–123, 2008.
[8]  J. Ruivo, K. Mermuys, K. Bacher, R. Kuhweide, E. Offeciers, and J. W. Casselman, “Cone beam computed tomography, a low-dose imaging technique in the postoperative assessment of cochlear implantation,” Otology and Neurotology, vol. 30, no. 3, pp. 299–303, 2009.
[9]  A. Aschendorff, R. Kubalek, B. Turowski et al., “Quality control after cochlear implant surgery by means of rotational tomography,” Otology and Neurotology, vol. 26, no. 1, pp. 34–37, 2005.
[10]  A. Aschendorff, J. Kromeier, T. Klenzner, and R. Laszig, “Quality control after insertion of the nucleus contour and contour advance electrode in adults,” Ear and Hearing, vol. 28, no. 2, pp. 75S–79S, 2007.
[11]  J. Damet, M. Sans-Merce, F. Miéville et al., “Comparison of organ doses and image quality between CT and flat panel XperCT scans in wrist and inner ear examinations,” Radiation Protection Dosimetry, vol. 139, no. 1–3, Article ID ncq062, pp. 164–168, 2010.
[12]  T. Struffert, V. Hertel, Y. Kyriakou et al., “Imaging of cochlear implant electrode array with flat-detector CT and conventional multislice CT: comparison of image quality and radiation dose,” Acta Oto-Laryngologica, vol. 130, no. 4, pp. 443–452, 2010.
[13]  C. C. Finley, T. A. Holden, L. K. Holden et al., “Role of electrode placement as a contributor to variability in cochlear implant outcomes,” Otology & Neurotology, vol. 29, no. 7, pp. 920–928, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133