全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Developmental Disabilities and Intracranial Abnormalities in Children with Symptomatic Cytomegalovirus and Cochlear Implants

DOI: 10.5402/2012/502746

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. To examine the association of intracranial radiographic abnormalities and developmental measures with outcomes in children with congenital symptomatic cytomegalovirus (CMV) and cochlear implants (CI). Design/Methods. It was a retrospective review of 15 children implanted from 2004 to 2010. Preimplant nonverbal intelligence quotient/developmental quotient (IQ/DQ) and head circumference (HC) were obtained. Computed tomography and magnetic resonance imaging of the brain and post-CI audiometry and language assessments were reviewed. Results. Eleven children (73%) had cognitive delay. Most had >1 developmental disability. Median IQ/DQ was 65 (23–90). All had imaging abnormalities. Most imaging abnormalities were in parietal (60%) and temporal (60%) lobes. Children with HC < 5th percentile had poorer median post-CI PTA (38?dB versus 27?dB, ). Periventricular calcifications were associated with lower receptive ( , ) and expressive ( , ) language. Because IQ/DQ was associated with periventricular calcifications ( , ) and small HC ( , ), their relationships with language appear partially driven by IQ/DQ. Conclusions. The location of brain abnormalities appears to correlate with worse outcomes after CI. These findings may allow for more accurate counseling of parents regarding anticipated postimplantation performance. 1. Introduction Cytomegalovirus (CMV) is one of the most common congenital viral infections in many regions. In the United States it occurs in 0.5–1% of live births, or approximately 40,000 infants annually [1]. The manifestations of CMV infection cover a broad spectrum ranging from asymptomatic to severe systemic disease resulting in significant morbidity and mortality. 90% of infants with congenital CMV are asymptomatic at birth. Despite being asymptomatic at birth, up to 7% of these children will develop sensorineural hearing loss (SNHL) that can be unilateral or bilateral, fluctuating or progressive, and range from mild to profound [2, 3]. Approximately 10% of infants with congenital CMV are symptomatic at birth, and 40% of these patients will develop SNHL [1, 2]. Hearing loss is the most common manifestation of congenital CMV infection making CMV a leading cause of nonhereditary congenital hearing loss [4]. Given the relatively large number of children potentially affected by CMV-related hearing loss and the wide range of manifestations of congenital CMV infection, it is difficult to predict how a child with symptomatic CMV will perform with a cochlear implant (CI). Previous studies suggest that children with symptomatic CMV derive

References

[1]  A. Kenneson and M. J. Cannon, “Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection,” Reviews in Medical Virology, vol. 17, no. 4, pp. 253–276, 2007.
[2]  A. J. Dahle, K. B. Fowler, J. D. Wright, S. B. Boppana, W. J. Britt, and R. F. Pass, “Longitudinal investigation of hearing disorders in children with congenital cytomegalovirus,” Journal of the American Academy of Audiology, vol. 11, no. 5, pp. 283–290, 2000.
[3]  K. B. Fowler, F. P. McCollister, A. J. Dahle, S. Boppana, W. J. Britt, and R. F. Pass, “Progressive and fluctuating sensorineural hearing loss in children with asymptomatic congenital cytomegalovirus infection,” Journal of Pediatrics, vol. 130, no. 4, pp. 624–630, 1997.
[4]  R. F. Pass, “Congenital cytomegalovirus infection and hearing loss,” Herpes, vol. 12, no. 2, pp. 50–55, 2005.
[5]  J. M. Ramirez Inscoe and T. P. Nikolopoulos, “Cochlear implantation in children deafened by cytomegalovirus: speech perception and speech intelligibility outcomes,” Otology and Neurotology, vol. 25, no. 4, pp. 479–482, 2004.
[6]  H. Yoshida, Y. Kanda, H. Takahashi, I. Miyamoto, T. Yamamoto, and H. Kumagami, “Cochlear implantation in children with congenital cytomegalovirus infection,” Otology and Neurotology, vol. 30, no. 6, pp. 725–730, 2009.
[7]  A. Ciorba, R. Bovo, P. Trevisi, C. Bianchini, R. Arboretti, and A. Martini, “Rehabilitation and outcome of severe profound deafness in a group of 16 infants affected by congenital cytomegalovirus infection,” European Archives of Oto-Rhino-Laryngology, vol. 266, no. 10, pp. 1539–1546, 2009.
[8]  H. . Yamazaki, R. Yamamoto, S. Moroto, et al., “Cochlear implantation in children with congenital cytomegalovirus infection accompanied by psycho-neurological disorders,” Acta Oto-Laryngologica, vol. 132, pp. 420–427, 2012.
[9]  D. J. Lee, L. Lustig, M. Sampson, J. Chinnici, and J. K. Niparko, “Effects of cytomegalovirus (CMV) related deafness on pediatric cochlear implant outcomes,” Otolaryngology—Head and Neck Surgery, vol. 133, no. 6, pp. 900–905, 2005.
[10]  G. Roid and L. Miller, Leiter International Performance Scale—Revised, Stoelting, Wood Dale, Ill, USA, 1997.
[11]  S. S. Sparrow, D. V. Cicchetti, and D. A. Balla, Vineland Adaptive Behavior Scales-II, Pearson Assessments, Minneapolis, Minn, USA, 2007.
[12]  I. L. Zimmerman, V. G. Steiner, and R. E. Pond, Preschool Language Scale, Harcourt Assessment, San Antonio, Tex, USA, 4th edition, 2002.
[13]  S. B. Boppana, K. B. Fowler, Y. Vaid et al., “Neuroradiographic findings in the newborn period and long-term outcome in children with symptomatic congenital cytomegalovirus infection,” Pediatrics, vol. 99, no. 3, pp. 409–414, 1997.
[14]  R. Manara, L. Balao, C. Baracchini, P. Drigo, R. D'Elia, and E. M. Ruga, “Brain magnetic resonance findings in symptomatic congenital cytomegalovirus infection,” Pediatric Radiology, vol. 41, pp. 962–970, 2011.
[15]  K. R. Fink, M. M. Thapa, G. E. Ishak, and S. Pruthi, “Neuroimaging of pediatric central nervous system Cytomegalovirus infection,” Radiographics, vol. 30, no. 7, pp. 1779–1796, 2010.
[16]  D. E. Noyola, G. J. Demmler, C. T. Nelson et al., “Early predictors of neurodevelopmental outcome in symptomatic congenital cytomegalovirus infection,” Journal of Pediatrics, vol. 138, no. 3, pp. 325–331, 2001.
[17]  J. W. Kimani, C. A. Buchman, J. K. Booker et al., “Sensorineural hearing loss in a pediatric population: association of congenital cytomegalovirus infection with intracranial abnormalities,” Archives of Otolaryngology—Head and Neck Surgery, vol. 136, no. 10, pp. 999–1004, 2010.
[18]  J. E. Desmond, J. D. E. Gabrieli, A. D. Wagner, B. L. Ginier, and G. H. Glover, “Lobular patterns of cerebellar activation in verbal working—memory and finger—tapping tasks as revealed by functional MRI,” Journal of Neuroscience, vol. 17, no. 24, pp. 9675–9685, 1997.
[19]  T. Justus, “The cerebellum and English grammatical morphology: evidence from production, comprehension, and grammaticality judgments,” Journal of Cognitive Neuroscience, vol. 16, no. 7, pp. 1115–1130, 2004.
[20]  L. M. Parsons, P. T. Fox, J. Hunter Downs et al., “Use of implicit motor imagery for visual shape discrimination as revealed by PET,” Nature, vol. 375, no. 6526, pp. 54–58, 1995.
[21]  M. A. Pastor, B. L. Day, E. Macaluso, K. J. Friston, and R. S. J. Frackowiak, “The functional neuroanatomy of temporal discrimination,” Journal of Neuroscience, vol. 24, no. 10, pp. 2585–2591, 2004.
[22]  R. F. Holt and K. I. Kirk, “Speech and language development in cognitively delayed children with cochlear implants,” Ear and Hearing, vol. 26, no. 2, pp. 132–148, 2005.
[23]  B. Pyman, P. Blamey, P. Lacy, G. Clark, and R. Dowell, “The development of speech perception in children using cochlear implants: effects of etiologic factors and delayed milestones,” American Journal of Otology, vol. 21, no. 1, pp. 57–61, 2000.
[24]  L. C. Edwards, R. Frost, and F. Witham, “Developmental delay and outcomes in paediatric cochlear implantation: implications for candidacy,” International Journal of Pediatric Otorhinolaryngology, vol. 70, no. 9, pp. 1593–1600, 2006.
[25]  J. Meinzen-Derr, S. Wiley, S. Grether, and D. I. Choo, “Language performance in children with cochlear implants and additional disabilities,” Laryngoscope, vol. 120, no. 2, pp. 405–413, 2010.
[26]  J. Meinzen-Derr, S. Wiley, S. Grether, and D. I. Choo, “Children with cochlear implants and developmental disabilities: a language skills study with developmentally matched hearing peers,” Research in Developmental Disabilities, vol. 32, no. 2, pp. 757–767, 2011.
[27]  R. Filipo, E. Bosco, P. Mancini, and D. Ballantyne, “Cochlear implants in special cases: deafness in the presence of disabilities and/or associated problems,” Acta Oto-Laryngologica, vol. 124, supplement 552, pp. 74–80, 2004.
[28]  S. B. Waltzman, V. Scalchunes, and N. L. Cohen, “Performance of multiply handicapped children using cochlear implants,” American Journal of Otology, vol. 21, no. 3, pp. 329–335, 2000.
[29]  S. Wiley, M. Jahnke, J. Meinzen-Derr, and D. Choo, “Perceived qualitative benefits of cochlear implants in children with multi-handicaps,” International Journal of Pediatric Otorhinolaryngology, vol. 69, no. 6, pp. 791–798, 2005.
[30]  P. S. Baxter, A. S. Rigby, M. H. Rotsaert, and I. Wright, “Acquired microcephaly: causes, patterns, motor and IQ effects, and associated growth changes,” Pediatrics, vol. 124, no. 2, pp. 590–595, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133