全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SPECT versus Planar Scintigraphy as a Clinical Aid in Evaluation of the Elderly with Knee Pain

DOI: 10.1155/2013/842852

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chronic knee pain is a common complaint among the elderly and appears in 30%–40% of the population over the age of 65. This study was performed in order to evaluate correlation between clinical presentation of chronic knee pain and the imaging findings of SPECT and planar bone scintigraphy. Methods. We prospectively recruited 116 patients over the age of 50 who had neither knee surgery nor trauma. Patients were divided into symptomatic and asymptomatic groups. All patients were examined by an experienced orthopedic surgeon; on the same day imaging was performed. Statistical analysis was performed to correlate physical examination findings with planar scintigraphy and SPECT findings and blood pool images. Results. In symptomatic patients, planar scintigraphy correlated significantly ( ) with the presence of excessive joint fluid, synovial condensation, and decrease in range of motion as measured in extension and flexion and patellar grinding test. SPECT findings correlated with all of the above tests as well as with medial and patellofemoral joint tenderness. Conclusions. We believe a finding of tenderness at the medial articular crease or of the patellofemoral compartment of the knee should be considered an indication for the use of SPECT scintigraphy rather than planar scintigraphy. 1. Introduction Bone scans have become a key tool in assessing musculoskeletal pathology [1, 2]. Use of Single Photon Emission Computerized Tomography (SPECT) is becoming more common over the years as well [3]. Use of SPECT allows a three-dimensional assessment of the isotope dispersed in the subjects body, as compared with a two-dimensional assessment with planar “regular” scintigraphy. Bone scintigraphy is divided into three consecutive phases. The Perfusion phase, assessed at 30 to 60 seconds following injection, the Blood-Pool phase assessed at 2 to 5 minutes following injection, and the late phase at 2 to 5 hours following injection [4]. The use of Polyphosphate compounds with the isotope and mainly Tc-MDP allows differentiating between pathologies within soft tissues surrounding the bone and those within the bone in the perfusion phase and that found in the late phase which is attributed to the chemical reaction of the polyphosphate compounds and the hydroxyappetite crystals within bone [5]. Planar scintigraphy of complex or large structures within the skeletal system does not relay an accurate three-dimensional anatomic image, while use of SPECT mapping allows for spatial localization of the pathology in the mapped organ [3]. The differential diagnosis of knee pain

References

[1]  J. R. Buscombe, C. E. Townsend, K. Kouris et al., “Clinical high resolution skeletal single photon emission tomography using a triple-headed gamma camera,” British Journal of Radiology, vol. 66, no. 789, pp. 817–822, 1993.
[2]  P. J. Ryan and I. Fogelman, “The bone scan: where are we now?” Seminars in Nuclear Medicine, vol. 25, no. 2, pp. 76–91, 1995.
[3]  I. Sarikaya, A. Sarikaya, and L. E. Holder, “The role of single photon emission computed tomography in bone imaging,” Seminars in Nuclear Medicine, vol. 31, no. 1, pp. 3–16, 2001.
[4]  D. Sandrock, M. Backhaus, G. Burmester, and D. L. Munz, “Imaging techniques in rheumatology: scintigraphy in rheumatoid arthritis,” Zeitschrift fur Rheumatologie, vol. 62, no. 5, pp. 476–480, 2003.
[5]  A. H. Maurer, J. C. Urbain, L. S. Malmud, and N. J. Bird, “Radionuclide imaging: general principles,” in Grainger & AlliSon'S DiagnoStic Radiology: A Textbook of Medical Imaging, G. R. Grainger, J. D. Allison, A. Andreas, and K. A. Dixon, Eds., pp. 137–147, Churchill Livingstone, New York, NY, USA, 4th edition, 2001.
[6]  M. F. Dillingham, N. N. Barry, and J. V. Lanin, “Hip and knee pain,” in Kelly’s Textbook of Rheumatology, R. Shaun, D. H. Edward Jr., and B. S. Clement, Eds., pp. 525–534, W.B Saunders, Philadelphia, Pa, USA, 6th edition, 2001.
[7]  B. Theruvil, V. Kapoor, R. Thalava, H. L. Nag, and P. P. Kotwal, “Vascular malformations in muscles around the knee presenting as knee pain,” Knee, vol. 11, no. 2, pp. 155–158, 2004.
[8]  W. M. Ronald and H. Daniel, “Clinical and laboratory findings in osteoarthritis,” in Arthritis and Allied Conditions: A Text Book of Rheumatology, D. J. McCarty and W. J. Koopman, Eds., pp. 2216–2245, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 14th edition, 2001.
[9]  T. Boeg?rd and K. Jonsson, “Radiography in osteoarthritis of the knee,” Skeletal Radiology, vol. 28, no. 11, pp. 605–615, 1999.
[10]  E. L. Radin and R. M. Rose, “Role of subchondral bone in the initiation and progression of cartilage damage,” Clinical Orthopaedics and Related Research, vol. 213, pp. 34–40, 1986.
[11]  S. Louis, “Clinical features of osteoarthritis,” in Kelly’s Textbook of Rheumatology, R. Shaun, D. H. Edward Jr., and B. S. Clement, Eds., pp. 1409–1417, W.B Saunders, Philadelphia, Pa, USA, 6th edition, 2001.
[12]  I. F. Petersson, T. Boeg?rd, J. Dahlstr?m, B. Svensson, D. Heineg?rd, and T. Saxne, “Bone scan and serum markers of bone and cartilage in patients with knee pain and osteoarthritis,” Osteoarthritis and Cartilage, vol. 6, no. 1, pp. 33–39, 1998.
[13]  J. C. Buckland-Wright, D. G. Macfarlane, and J. A. Lynch, “Sensitivity of radiographic features and specificity of scintigraphic imaging in hand osteoarthritis,” Revue du Rhumatisme, vol. 62, supplement 1, no. 6, pp. 14S–26S, 1995.
[14]  P. Dieppe, J. Cushnaghan, P. Young, and J. Kirwan, “Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy,” Annals of the Rheumatic Diseases, vol. 52, no. 8, pp. 557–563, 1993.
[15]  E. Etchebehere, M. Etchebehere, R. Gamba, W. Belangero, and E. E. Camargo, “Orthopedic pathology of the lower extremities: scintigraphic evaluation in the thigh, knee, and leg,” Seminars in Nuclear Medicine, vol. 28, no. 1, pp. 41–61, 1998.
[16]  D. C. Yang, R. S. Ratani, P. K. Mittal, R. S. Chua, and S. M. Patel, “Radionuclide three-phase whole-body bone imaging,” Clinical Nuclear Medicine, vol. 27, no. 6, pp. 419–426, 2002.
[17]  E. F. McCarthy, “Histopathologic correlates of a positive bone scan,” Seminars in Nuclear Medicine, vol. 27, no. 4, pp. 309–320, 1997.
[18]  B. D. Collier, R. P. Johnson, G. F. Carrera, et al., “Chronic knee pain assessed by SPECT: comparison with other modalities,” Radiology, vol. 157, no. 3, pp. 795–802, 1985.
[19]  M. Lorberboym, D. B. Ami, D. Zin, G. Nikolov, and E. Adar, “Incremental diagnostic value of 99mTc methylene diphosphonate bone SPECT in patients with patellofemoral pain disorders,” Nuclear Medicine Communications, vol. 24, no. 4, pp. 403–410, 2003.
[20]  O. T. Eren, “The accuracy of joint line tenderness by physical examination in the diagnosis of meniscal tears,” Arthroscopy, vol. 19, no. 8, pp. 850–854, 2003.
[21]  P. J. Fowler and J. A. Lubliner, “The predictive value of five clinical signs in the evaluation of meniscal pathology,” Arthroscopy, vol. 5, no. 3, pp. 184–186, 1989.
[22]  P. J. Ryan, K. Reddy, and J. Fleetcroft, “A prospective comparison of clinical examination, MRI, bone SPECT, and arthroscopy to detect meniscal tears,” Clinical Nuclear Medicine, vol. 23, no. 12, pp. 803–806, 1998.
[23]  E. Even-Sapir, R. Arbel, H. Lerman, G. Flusser, G. Livshitz, and N. Halperin, “Bone injury associated with anterior cruciate ligament and meniscal tears: assessment with bone single photon emission computed tomography,” Investigative Radiology, vol. 37, no. 9, pp. 521–527, 2002.
[24]  I. Wigler, L. Neumann, and M. Yaron, “Validation study of a Hebrew version of WOMAC in patients with osteoarthritis of the knee,” Clinical Rheumatology, vol. 18, no. 5, pp. 402–405, 1999.
[25]  J. A. Repicci and J. F. Hartman, “Minimally invasive unicondylar knee arthroplasty for the treatment of unicompartmental osteoarthritis: an outpatient arthritic bypass procedure,” Orthopedic Clinics of North America, vol. 35, no. 2, pp. 201–216, 2004.
[26]  K. Y. Yang, M. C. Wang, S. J. Yeo, and N. N. Lo, “Minimally invasive unicondylar versus total condylar knee arthroplasty-early results of a matched-pair comparison,” Singapore Medical Journal, vol. 44, no. 11, pp. 559–562, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133