全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Treatment for Wear and Osteolysis in Well-Fixed Uncemented TKR

DOI: 10.1155/2013/398298

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Traditionally, osteolysis around total knee replacements (TKRs) is treated with complete revision. In certain subsets, polyethylene insert exchange and bone grafting may be applicable. This study reports the clinical outcomes for selective bone grafting in patients with osteolysis without complete revision of the TKR. Methods. This retrospective study analyzes 10 TKRs (9 patients, 66.5 ± 6.1 years old) presenting with osteolysis and revised after 8.7 ± 1.9 years of in vivo function. At index TKR, all patients were implanted with uncemented prosthesis and modular polyethylene insert with anteroposterior articular constraint (Ultracongruent, Natural Knee II, Sulzer Medica). The surgical technique for treating the osteolysis included removal of necrotic bone tissue using curettage, filling of the defect with bone graft materials, and polyethylene insert exchange. Results. Patients have not exhibited any further complications associated with osteolysis after 5.1 ± 2.4 years of followup. Routine radiographic exams show total incorporation of the graft material into the previously lytic regions in all patients. Conclusion. In some TKRs with osteolysis and firmly fixed components, the removal of lytic tissue and subsequent defect filling with bone graft materials can be a viable solution. This case series shows complete resolution of osteolysis in all patients with no complications. 1. Introduction Periprosthetic osteolysis is a known complication after cementless total knee replacement (TKR), including cases in which the implant is well fixed and properly aligned [1–9]. A viable treatment option for progressive periprosthetic osteolysis observed after total hip replacement (THR) is polyethylene liner exchange and bone grafting of the osteolytic lesions [10]. Using this treatment method as a model, a polyethylene insert exchange and bone grafting technique was developed to treat patients with progressive periprosthetic osteolysis in cementless TKR. Due to the decrease in survivorship associated with complete TKR revision [11], combined with the increasingly younger patients undergoing TKR, this method may be a viable option for a select group of TKR patients with osteolysis. Osteolysis is a well-recognized complication after THR that presents diagnostic and treatment challenges [10]. Among patients showing polyethylene wear and acetabular osteolysis who are otherwise asymptomatic for pain without visible cup loosening or malalignment, treatment options include isolated liner exchange or revision of the liner and cup, both in combination with

References

[1]  J. Benevenia, F. Y. I. Lee, F. Buechel, and J. R. Parsons, “Pathologic supracondylar fracture due to osteolytic pseudotumor of knee following cementless total knee replacement,” Journal of Biomedical Materials Research, vol. 43, no. 4, pp. 473–477, 1998.
[2]  G. A. Engh, K. A. Dwyer, and C. K. Hanes, “Polyethylene wear of metal-backed tibial components in total and unicompartmental knee prostheses,” Journal of Bone and Joint Surgery B, vol. 74, no. 1, pp. 9–17, 1992.
[3]  G. A. Engh, N. L. Parks, and D. J. Ammeen, “Tibial osteolysis in cementless total knee arthroplasty: a review of 25 cases treated with and without tibial component revision,” Clinical Orthopaedics and Related Research, no. 309, pp. 33–43, 1994.
[4]  K. R. Kane, D. H. DeHeer, J. D. Beebe, and R. Bereza, “An osteolytic lesion associated with polyethylene wear debris adjacent to a stable total knee prosthesis,” Orthopaedic Review, vol. 23, no. 4, pp. 332–337, 1994.
[5]  P. L. Lewis, C. H. Rorabeck, and R. B. Bourne, “Screw osteolysis after cementless total knee replacement,” Clinical Orthopaedics and Related Research, no. 321, pp. 173–177, 1995.
[6]  P. C. Peters Jr., G. A. Engh, K. A. Dwyer, and T. N. Vinh, “Osteolysis after total knee arthroplasty without cement,” Journal of Bone and Joint Surgery A, vol. 74, no. 6, pp. 864–876, 1992.
[7]  R. J. Rodriguez and R. L. Barrack, “Failed cementless total knee arthroplasty presenting as osteolysis of the fibular head,” Journal of Arthroplasty, vol. 16, no. 2, pp. 239–242, 2001.
[8]  V. Sanchis-Alfonso and J. Alcacer-García, “Extensive osteolytic cystlike area associated with polyethylene wear debris adjacent to an aseptic, stable, uncemented unicompartmental knee prosthesis: case report,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 9, no. 3, pp. 173–177, 2001.
[9]  B. A. Vernon, A. J. Bollinger, K. L. Garvin, and S. V. McGarry, “Osteolytic lesion of the tibial diaphysis after cementless TKA,” Orthopedics, vol. 34, no. 3, article 224, 2011.
[10]  J. D. Chang, J. H. Yoo, M. Hur, S. S. Lee, Y. K. Chung, and C. J. Lee, “Revision total hip arthroplasty for pelvic osteolysis with well-fixed cementless cup,” Journal of Arthroplasty, vol. 22, no. 7, pp. 987–992, 2007.
[11]  K. J. Saleh, J. A. Rand, and D. A. McQueen, “Current status of revision total knee arthroplasty: how do we assess results?” Journal of Bone and Joint Surgery A, vol. 85, no. 2, pp. 18–20, 2003.
[12]  K. H. Koh, Y.-W. Moon, S.-J. Lim, H. I. Lee, J. W. Shim, and Y.-S. Park, “Complete acetabular cup revision versus isolated liner exchange for polyethylene wear and osteolysis without loosening in cementless total hip arthroplasty,” Archives of Orthopaedic and Trauma Surgery, vol. 131, no. 11, pp. 1591–1600, 2011.
[13]  C. Restrepo, E. Ghanem, C. Houssock, M. Austin, J. Parvizi, and W. J. Hozack, “Isolated polyethylene exchange versus acetabular revision for polyethylene wear,” Clinical Orthopaedics and Related Research, vol. 467, no. 1, pp. 194–198, 2009.
[14]  G. C. Babis, R. T. Trousdale, and B. F. Morrey, “The effectiveness of isolated tibial insert exchange in revision total knee arthroplasty,” Journal of Bone and Joint Surgery A, vol. 84, no. 1, pp. 64–68, 2002.
[15]  W. L. Griffin, R. D. Scott, D. F. Dalury, O. M. Mahoney, J. B. Chiavetta, and S. M. Odum, “Modular insert exchange in knee arthroplasty for treatment of wear and osteolysis,” Clinical Orthopaedics and Related Research, no. 464, pp. 132–137, 2007.
[16]  J. J. Callaghan, E. R. Reynolds, N. T. Ting, D. D. Goetz, J. C. Clohisy, and W. J. Maloney, “Liner exchange and bone grafting: rare option to treat wear & lysis of stable TKAs,” Clinical Orthopaedics and Related Research, vol. 469, no. 1, pp. 154–159, 2011.
[17]  R. D. Bloebaum, K. E. Koller, B. M. Willie, and A. A. Hofmann, “Does using autograft bone chips achieve consistent bone ingrowth in primary TKA?” Clinical Orthopaedics and Related Research, vol. 470, no. 7, pp. 1869–1878, 2012.
[18]  R. D. Bloebaum, M. H. Rubman, and A. A. Hofmann, “Bone ingrowth into porous-coated tibial components implanted with autograft bone chips: analysis of ten consecutively retrieved implants,” Journal of Arthroplasty, vol. 7, no. 4, pp. 483–493, 1992.
[19]  J. N. Insall, L. D. Dorr, R. D. Scott, and W. N. Scott, “Rationale of The knee society clinical rating system,” Clinical Orthopaedics and Related Research, no. 248, pp. 13–14, 1989.
[20]  L. A. Whiteside and B. Katerberg, “Revision of the polyethylene component for wear in TKA,” Clinical Orthopaedics and Related Research, no. 452, pp. 193–199, 2006.
[21]  G. A. Engh, L. M. Koralewicz, and T. R. Pereles, “Clinical results of modular polyethylene insert exchange with retention of total knee arthroplasty components,” Journal of Bone and Joint Surgery A, vol. 82, no. 4, pp. 516–523, 2000.
[22]  S. B. Haas, J. N. Insall, W. Montgomery, and R. E. Windsor, “Revision total knee arthroplasty with use of modular components with stems inserted without cement,” Journal of Bone and Joint Surgery A, vol. 77, no. 11, pp. 1700–1707, 1995.
[23]  D. E. Hockman, D. Ammeen, and G. A. Engh, “Augments and allografts in revision total knee arthroplasty: usage and outcome using one modular revision prosthesis,” Journal of Arthroplasty, vol. 20, no. 1, pp. 35–41, 2005.
[24]  C. S. Mow and J. D. Wiedel, “Structural allografting in revision total knee arthroplasty,” Journal of Arthroplasty, vol. 11, no. 3, pp. 235–241, 1996.
[25]  C. L. Peters, R. Hennessey, R. M. Barden, J. O. Galante, and A. G. Rosenberg, “Revision total knee arthroplasty with a cemented posterior-stabilized or constrained condylar prosthesis: a minimum 3-year and average 5-year follow- up study,” Journal of Arthroplasty, vol. 12, no. 8, pp. 896–903, 1997.
[26]  I. Stockley, J. P. McAuley, and A. E. Gross, “Allograft reconstruction in total knee arthroplasty,” Journal of Bone and Joint Surgery B, vol. 74, no. 3, pp. 393–397, 1992.
[27]  G. I. Drosos, K. I. Kazakos, P. Kouzoumpasis, and D. A. Verettas, “Safety and efficacy of commercially available demineralised bone matrix preparations: a critical review of clinical studies,” Injury, vol. 38, no. 4, pp. S13–S21, 2007.
[28]  E. Gruskin, B. A. Doll, F. W. Futrell, J. P. Schmitz, and J. O. Hollinger, “Demineralized bone matrix in bone repair: history and use,” Advanced Drug Delivery Reviews, vol. 64, no. 12, pp. 1063–1077, 2012.
[29]  C. A. Engh Jr., C. J. Sychterz, A. M. Young, D. C. Pollock, S. D. Toomey, and C. A. Engh, “Interobserver and intraobserver variability in radiographic assessment of osteolysis,” Journal of Arthroplasty, vol. 17, no. 6, pp. 752–759, 2002.
[30]  J. Dexel, S. Kirschner, M. K. Harman, and J. Lützner, “A rare case of bilateral large osteolysis following cemented and cementless total knee arthroplasties,” Acta Orthopaedica, 2012.
[31]  L. B. Solomon, R. B. Stamenkov, A. J. MacDonald et al., “Imaging periprosthetic osteolysis around total knee arthroplasties using a human cadaver model,” Journal of Arthroplasty, vol. 27, no. 6, pp. 1069–1074, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133