The aim of this study was to provide a preliminary evaluation of the possible effect that femoral version may have on the bearing equilibrium conditions developed on the medial tibiofemoral compartment. A digital 3D solid model of the left physiological adult femur was used to create morphological variations of different neck-shaft angles (varus 115, normal 125, and valgus 135 degrees) and version angles (?10, 0, and +10 degrees). By means of finite element modeling and analysis techniques (FEM-FEA), a virtual experiment was executed with the femoral models aligned in a neutral upright position, distally supported on a fully congruent tibial tray and proximally loaded with a vertical only hip joint load of 2800?N. Equivalent stresses and their distribution on the medial compartment were computed and comparatively evaluated. Within our context, the neck-shaft angle proved to be of rather indifferent influence. Reduction of femoral version, however, appeared as the most influencing parameter regarding the tendency of the medial compartment to establish its bearing equilibrium towards posteromedial directions, as a consequence of the corresponding anteroposterior changes of the hip centre over the horizontal tibiofemoral plane. We found a correlation between femoral anteversion and medial tibiofemoral compartment contact pressure. Our findings will be further elucidated by more sophisticated FEM-FEA and by clinical studies that are currently planned. 1. Introduction Osteoarthritis at large and especially in the knee joint is believed to be the result of local factors acting within the context of a systemic susceptibility [1, 2]. These local factors govern how load is distributed across the articular cartilage. It is the distribution of load that confers upon weight bearing joints the ability to bear loads that are several times greater than body weight over a lifetime [3]. Because alteration in these local factors may lead to the development of excessive stresses on the joint and cause damage to the articular cartilage, they are receiving increasing attention in studies of the natural history of OA and especially the malalignment and laxity. The connection between varus and valgus deformities and gonarthrosis is well known [4]. Very few reports exist concerning the relation between the torsional element of the femur (anteversion) and the development of knee osteoarthritis. In a cadaveric study [5], the correlation between increasing arthritis of the knee and decreasing femoral anteversion has been identified. In a clinical study [6], the existence of
References
[1]
P. Dieppe, “The classification and diagnosis of osteoarthritis,” in Osteoarthritis Disorders, K. E. Kuettner and V. M. Goldberg, Eds., pp. 7–10, American Academy of Orthopaedic Surgeons, Rosemont, Ill, USA, 1995.
[2]
I. P. Pelletiet, J. Martel-Pelletier, and D. S. Howell, “Etiopathogenesis of osteoarthritis,” in Arthritis ALLIED Conditions: A Text Book of Rheumatology, W. J. Koopmen, Ed., pp. 1969–1984, Williams and Wilkins, Baltimore, Md, USA, 1997.
[3]
S. L. Y. Woo, J. L. Lewis, J. K. Suh, and L. Engebretsen, “Acute injury to ligament and meniscus as inducers of osteoarthritis,” in Osteoarthritic Disorders, K. E. Kuettner and V. M. Goldberg, Eds., pp. 185–196, American Academy of Orthopaedic Surgeons, Rosemont, Ill, USA, 1995.
[4]
P. Maquet, “The biomechanics of the knee and surgical possibilities of healing osteoarthritic knee joints,” Clinical Orthopaedics and Related Research, vol. 146, pp. 102–110, 1980.
[5]
D. G. Eckhoff, R. C. Kramer, C. A. Alongi, and D. P. VanGerven, “Femoral anteversion and arthritis of the knee,” Journal of Pediatric Orthopaedics, vol. 14, no. 5, pp. 608–610, 1994.
[6]
M. Moussa, “Rotational malalignment and femoral torsion in osteoarthritic knees with patellofemoral joint involvement: a CT scan study,” Clinical Orthopaedics and Related Research, no. 304, pp. 176–183, 1994.
[7]
P. H. Bretin, P. O’Loughlin, E. M. Suero, et al., “Influence of femoral malrotation on knee joint alignment and intra-articular contract pressures,” Archives of Orthopaedic and Trauma Surgery, vol. 131, pp. 1115–1120, 2011.
[8]
H. A. McKellop, G. Sigholm, F. C. Redfern, B. Doyle, A. Sarmiento, and J. Luck, “The effect of simulated fracture-angulations of the tibia on cartilage pressures in the knee joint,” Journal of Bone and Joint Surgery—Series A, vol. 73, no. 9, pp. 1382–1391, 1991.
[9]
N. S. Broughton, J. H. Newman, and R. A. J. Baily, “Unicompartmental replacement and high tibial osteotomy for osteoarthritis of the knee. A comparative study after 5–10 years' follow-up,” Journal of Bone and Joint Surgery—Series B, vol. 68, no. 3, pp. 447–452, 1986.
[10]
F. R. Noyes, S. D. Barber, and R. Simon, “High tibial osteotomy and ligament reconstruction in varus angulated, anterior cruciate ligament-deficient knees. A two- to seven-year follow-up study,” American Journal of Sports Medicine, vol. 21, no. 1, pp. 2–12, 1993.
[11]
D. Goutallier, S. van Driessche, O. Manicom, E. S. Ali, J. Bernageau, and C. Radier, “Influence of lower-limb torsion on long-term outcomes of tibial valgus osteotomy for medial compartment knee osteoarthritis,” Journal of Bone and Joint Surgery—Series A, vol. 88, no. 11, pp. 2439–2447, 2006.
[12]
M. Maruyama, J. R. Feinberg, W. N. Capello, and J. A. D'Antonio, “Morphologic features of the acetabulum and femur: anteversion angle and implant positioning,” Clinical Orthopaedics and Related Research, no. 393, pp. 52–65, 2001.
[13]
M. E. Taylor, K. E. Tanner, M. A. R. Freeman, and A. L. Yettram, “Stress and strain distribution within the intact femur: compression or bending?” Medical Engineering and Physics, vol. 18, no. 2, pp. 122–131, 1996.
[14]
L. Peng, J. Bai, X. Zeng, and Y. Zhou, “Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions,” Medical Engineering and Physics, vol. 28, no. 3, pp. 227–233, 2006.
[15]
R. W. Moskowitz, D. S. Howell, R. A. Altman, et al., Osteoarthritis. Diagnosis and Medical Surgical Management, W.S. Saunders, 3rd edition, 2001.
[16]
C. V. Oddis, “Review new perspectives on osteoarthritis,” American Journal of Medicin, vol. 26, pp. 10–15, 1996.
[17]
T. P. Andriacchi, A. Mündermann, R. L. Smith, E. J. Alexander, C. O. Dyrby, and S. Koo, “A framework for the in vivo pathomechanics of osteoarthritis at the knee,” Annals of Biomedical Engineering, vol. 32, no. 3, pp. 447–457, 2004.
[18]
J. A. M. Bramer, M. Maas, R. J. Dallinga, R. L. te Slaa, and D. A. Vergroesen, “Increased external tibial torsion and osteochondritis dissecans of the knee,” Clinical Orthopaedics and Related Research, no. 422, pp. 175–179, 2004.
[19]
M. Kenawey, E. Liodakis, C. Krettek, et al., “Effect of the lower limb rotational alignment on tibiofemoral contact pressure,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 19, pp. 1851–1859, 2011.
[20]
T. Yagi, “Tibial torsion in patients with medial-type osteoarthrotic knees,” Clinical Orthopaedics and Related Research, no. 302, pp. 52–56, 1994.
[21]
T. Yagi and T. Sasaki, “Tibial torsion in patients with medial-type osteoarthritic knee,” Clinical Orthopaedics and Related Research, vol. 213, pp. 177–182, 1986.
[22]
A. Kobayashi, R. Himeno, and N. Uezaki, “Rotation of the leg in OA of the knee (varus type),” Japanese Orthopedic Surgery, vol. 29, p. 753, 1978.
[23]
D. Paley and K. Tetsworth, “Mechanical axis deviation of the lower limbs: preoperative planning of uniapical angular deformities of the tibia or femur,” Clinical Orthopaedics and Related Research, no. 280, pp. 48–64, 1992.
[24]
M. C. van Joost and R. J. Gastkemper, “Malrotation after femoral shaft fractures,” Archivum Chirurgicum Neerlandicum, vol. 24, no. 2, pp. 101–115, 1972.