全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Vitamin D Status and Spine Surgery Outcomes

DOI: 10.1155/2013/471695

Full-Text   Cite this paper   Add to My Lib

Abstract:

There is a high prevalence of hypovitaminosis D in patients with back pain regardless of whether or not they require surgical intervention. Furthermore, the risk of hypovitaminosis D is not limited to individuals with traditional clinical risk factors. Vitamin D plays an essential role in bone formation, maintenance, and remodeling, as well as muscle function. Published data indicate that hypovitaminosis D could adversely affect bone formation and muscle function in multiple ways. The literature contains numerous reports of myopathy and/or musculoskeletal pain associated with hypovitaminosis D. In terms of spinal fusion outcomes, a patient may have a significant decrease in pain and the presence of de novo bone on an X-ray, yet their functional ability may remain severely limited. Hypovitaminosis D may be a contributing factor to the persistent postoperative pain experienced by these patients. Indeed, hypovitaminosis D is not asymptomatic, and symptoms can manifest themselves independent of the musculoskeletal pathological changes associated with conditions like osteomalacia. It appears that vitamin D status is routinely overlooked, and there is a need to raise awareness about its importance among all healthcare practitioners who treat spine patients. 1. Introduction A large portion of the United States population experiences low back pain, and an increasing number undergo spinal fusion each year. While many patients achieve a satisfactory outcome, there is a subpopulation that fails to achieve acceptable outcomes. These patients may have obvious causes for their outcomes (e.g., pseudarthrosis); however, there are those that are deemed fused yet continue to experience low back pain and other symptoms. Although many factors may be considered when a patient experiences a suboptimal outcome following spinal fusion surgery, serum vitamin D concentration is rarely considered even though most physicians acknowledge its importance in maintaining musculoskeletal health. In this review, we discuss the role of vitamin D in musculoskeletal health especially in relation to low back pain and outcomes of spinal fusion surgery. Our discussion includes the risk factors and prevalence rates of hypovitaminosis D as well as the literature published on vitamin D and spinal surgery. A key concept is the fact that hypovitaminosis D is not asymptomatic, and we delineate the mechanisms by which hypovitaminosis D can adversely affect spinal fusion outcomes. 2. Vitamin D 2.1. What Is Vitamin D? The term vitamin D refers to a group of structurally related metabolites [1]. Vitamin

References

[1]  P. Karlson, H. B. F. Dixon, B. L. Horecker et al., “International Union of Pure and Applied Chemistry and International Union of Biochemistry—nomenclature of vitamin D,” Pure and Applied Chemistry, vol. 54, no. 8, pp. 1511–1516, 1982.
[2]  J. G. Haddad, L. Y. Matsuoka, B. W. Hollis, Y. Z. Hu, and J. Wortsman, “Human plasma transport of vitamin D after its endogenous synthesis,” Journal of Clinical Investigation, vol. 91, no. 6, pp. 2552–2555, 1993.
[3]  G. Ponchon and H. F. DeLuca, “The role of the liver in the metabolism of vitamin D,” Journal of Clinical Investigation, vol. 48, no. 7, pp. 1273–1279, 1969.
[4]  A. W. Norman, “Evidence for a new kidney-produced hormone, 1,25-dihydroxycholecalciferol, the proposed biologically active form of vitamin D,” American Journal of Clinical Nutrition, vol. 24, no. 11, pp. 1346–1351, 1971.
[5]  R. Bouillon, W. H. Okamura, and A. W. Norman, “Structure-function relationships in the vitamin D endocrine system,” Endocrine Reviews, vol. 16, no. 2, pp. 200–256, 1995.
[6]  M. F. Holick, N. C. Binkley, H. A. Bischoff-Ferrari et al., “Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline,” The Journal of Clinical Endocrinology & Metabolism, vol. 96, no. 7, pp. 1911–1930, 2011.
[7]  A. Unnanuntana, B. J. Rebolledo, B. P. Gladnick et al., “Does vitamin D status affect the attainment of in-hospital functional milestones after total hip arthroplasty?” Journal of Arthroplasty, vol. 27, no. 3, pp. 482–489, 2012.
[8]  A. Unnanuntana, A. Saleh, J. T. Nguyen et al., “Low vitamin D status does not adversely affect short-term functional outcome after total hip arthroplasty,” Journal of Arthroplasty, vol. 28, no. 2, pp. 315–322, 2013.
[9]  L. Bogunovic, A. D. Kim, B. S. Beamer, J. Nguyen, and J. M. Lane, “Hypovitaminosis D in patients scheduled to undergo orthopaedic surgery: a single-center analysis,” Journal of Bone and Joint Surgery. American, vol. 92, no. 13, pp. 2300–2304, 2010.
[10]  A. Lotfi, A. M. Abdel-Nasser, A. Hamdy, A. A. Omran, and M. A. El-Rehany, “Hypovitaminosis D in female patients with chronic low back pain,” Clinical Rheumatology, vol. 26, no. 11, pp. 1895–1901, 2007.
[11]  G. E. Stoker, J. M. Buchowski, K. H. Bridwell, K. D. Riew, and L. P. Zebala, “Vitamin D status of adults undergoing surgical spinal fusion,” in Proceedings of the 26th Annual Meeting of the North American Spine Society, Chicago, Ill, USA, November 2011.
[12]  H. A. Bischoff-Ferrari, Y. Zhang, D. P. Kiel, and D. T. Felson, “Positive association between serum 25-hydroxyvitamin D level and bone density in osteoarthritis,” Arthritis and Rheumatism, vol. 53, no. 6, pp. 821–826, 2005.
[13]  C. M. Gordon, K. C. DePeter, H. A. Feldman, E. Grace, and S. J. Emans, “Prevalence of vitamin D deficiency among healthy adolescents,” Archives of Pediatrics and Adolescent Medicine, vol. 158, no. 6, pp. 531–537, 2004.
[14]  G. A. Plotnikoff and J. M. Quigley, “Prevalence of severe hypovitaminosis D in patients with persistent, nonspecific musculoskeletal pain,” Mayo Clinic Proceedings, vol. 78, no. 12, pp. 1463–1470, 2003.
[15]  H. A. Bischoff-Ferrari, E. Giovannucci, W. C. Willett, T. Dietrich, and B. Dawson-Hughes, “Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes,” American Journal of Clinical Nutrition, vol. 84, no. 1, pp. 18–28, 2006.
[16]  M. K. Thomas, D. M. Lloyd-Jones, R. I. Thadhani et al., “Hypovitaminosis D in medical inpatients,” The New England Journal of Medicine, vol. 338, no. 12, pp. 777–783, 1998.
[17]  N. Binkley, R. Novotny, D. Krueger et al., “Low vitamin D status despite abundant sun exposure,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 6, pp. 2130–2135, 2007.
[18]  IOM, Institutue of Medicine Dietary Reference Intakes for Calcium and Vitamin D, National Academies Press, Washington, DC, USA, 2010.
[19]  D. A. Hanley, A. Cranney, G. Jones et al., “Vitamin D in adult health and disease: a review and guideline statement from osteoporosis Canada,” CMAJ, vol. 182, no. 12, pp. E610–E618, 2010.
[20]  B. Dawson-Hughes, R. P. Heaney, M. F. Holick, P. Lips, P. J. Meunier, and R. Vieth, “Estimates of optimal vitamin D status,” Osteoporosis International, vol. 16, no. 7, pp. 713–716, 2005.
[21]  B. Dawson-Hughes, A. Mithal, J. P. Bonjour et al., “IOF position statement: vitamin D recommendations for older adults,” Osteoporosis International, vol. 21, no. 7, pp. 1151–1154, 2010.
[22]  R. Vieth, “Why the minimum desirable serum 25-hydroxyvitamin D level should be 75?nmol/L (30?ng/ml),” Best Practice & Research Clinical Endocrinology & Metabolism, vol. 25, no. 4, pp. 681–691, 2011.
[23]  S. S. Harris, B. Dawson-Hughes, and G. A. Perrone, “Plasma 25-hydroxyvitamin D responses of younger and older men to three weeks of supplementation with 1800?IU/day of vitamin D,” Journal of the American College of Nutrition, vol. 18, no. 5, pp. 470–474, 1999.
[24]  R. Vieth, “Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety,” American Journal of Clinical Nutrition, vol. 69, no. 5, pp. 842–856, 1999.
[25]  R. P. Heaney, K. M. Davies, T. C. Chen, M. F. Holick, and M. J. Barger-Lux, “Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol,” American Journal of Clinical Nutrition, vol. 77, no. 1, pp. 204–210, 2003.
[26]  R. Vieth, D. E. Cole, G. A. Hawker, H. M. Trang, and L. A. Rubin, “Wintertime vitamin D insufficiency is common in young Canadian women, and their vitamin D intake does not prevent it,” European Journal of Clinical Nutrition, vol. 55, no. 12, pp. 1091–1097, 2001.
[27]  H. Glerup, K. Mikkelsen, L. Poulsen et al., “Commonly recommended daily intake of vitamin D is not sufficient if sunlight exposure is limited,” Journal of Internal Medicine, vol. 247, no. 2, pp. 260–268, 2000.
[28]  R. P. Heaney, M. S. Dowell, C. A. Hale, and A. Bendich, “Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D,” Journal of the American College of Nutrition, vol. 22, no. 2, pp. 142–146, 2003.
[29]  R. Vieth, “Why the optimal requirement for vitamin D3 is probably much higher than what is officially recommended for adults,” Journal of Steroid Biochemistry and Molecular Biology, vol. 89-90, no. 1–5, pp. 575–579, 2004.
[30]  B. W. Hollis, “Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: implications for establishing a new effective dietary intake recommendation for vitamin D,” Journal of Nutrition, vol. 135, no. 2, pp. 317–322, 2005.
[31]  V. Tangpricha, E. N. Pearce, T. C. Chen, and M. F. Holick, “Vitamin D insufficiency among free-living healthy young adults,” American Journal of Medicine, vol. 112, no. 8, pp. 659–662, 2002.
[32]  M. J. Barger-Lux, R. P. Heaney, S. Dowell, T. C. Chen, and M. F. Holick, “Vitamin D and its major metabolites: serum levels after graded oral dosing in healthy men,” Osteoporosis International, vol. 8, no. 3, pp. 222–230, 1998.
[33]  R. P. Heaney, “The vitamin D requirement in health and disease,” Journal of Steroid Biochemistry and Molecular Biology, vol. 97, no. 1-2, pp. 13–19, 2005.
[34]  S. Datta, M. Alfaham, D. P. Davies et al., “Vitamin D deficiency in pregnant women from a non-European ethnic minority population—an interventional study,” BJOG, vol. 109, no. 8, pp. 905–908, 2002.
[35]  M. Lehtonen-Veromaa, T. M?tt?nen, I. Nuotio, K. Irjala, and J. Viikari, “The effect of conventional vitamin D2 supplementation on serum 25(OH)D concentration is weak among peripubertal Finnish girls: a 3-y prospective study,” European Journal of Clinical Nutrition, vol. 56, no. 5, pp. 431–437, 2002.
[36]  E. A. Yetley, “Assessing the vitamin D status of the US population,” American Journal of Clinical Nutrition, vol. 88, no. 2, pp. 558S–564S, 2008.
[37]  S. A. Abrams, I. J. Griffin, K. M. Hawthorne, S. K. Gunn, C. M. Gundberg, and T. O. Carpenter, “Relationships among vitamin D levels, parathyroid hormone, and calcium absorption in young adolescents,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 10, pp. 5576–5581, 2005.
[38]  N. Binkley, R. Novotny, D. Krueger et al., “Low vitamin D status despite abundant sun exposure,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 6, pp. 2130–2135, 2007.
[39]  J. Parry, E. Sullivan, and A. C. Scott, “Vitamin D sufficiency screening in preoperative pediatric orthopaedic patients,” Journal of Pediatric Orthopaedics, vol. 31, no. 3, pp. 331–333, 2011.
[40]  M. S. LeBoff, W. G. Hawkes, J. Glowacki, J. Yu-Yahiro, S. Hurwitz, and J. Magaziner, “Vitamin D-deficiency and post-fracture changes in lower extremity function and falls in women with hip fractures,” Osteoporosis International, vol. 19, no. 9, pp. 1283–1290, 2008.
[41]  M. R. Brinker, D. P. O'Connor, Y. T. Monla, and T. P. Earthman, “Metabolic and endocrine abnormalities in patients with nonunions,” Journal of Orthopaedic Trauma, vol. 21, no. 8, pp. 557–570, 2007.
[42]  W. E. Plehwe and R. P. L. Carey, “Spinal surgery and severe vitamin D deficiency,” Medical Journal of Australia, vol. 176, no. 9, pp. 438–439, 2002.
[43]  S. G. Pneumaticos, C. P. Zafeiris, E. Chronopoulos, E. Kassi, and G. P. Lyritis, “Vitamin D deficiency resulting to a subsequent vertebral fracture after kyphoplasty,” Journal of Musculoskeletal Neuronal Interactions, vol. 11, no. 1, pp. 81–83, 2011.
[44]  G. Schwalfenberg, “Improvement of chronic back pain or failed back surgery with vitamin D repletion: a case series,” Journal of the American Board of Family Medicine, vol. 22, no. 1, pp. 69–74, 2009.
[45]  S. Waikakul, “Serum 25-hydroxy-calciferol level and failed back surgery syndrome,” The Journal of Orthopaedic Surgery, vol. 20, no. 1, pp. 18–22, 2012.
[46]  T. H. Kim, J. Y. Yoon, B. H. Lee et al., “Changes in vitamin D status after surgery in female patients with lumbar spinal stenosis and its clinical significance,” Spine, vol. 37, no. 21, pp. E1326–E1330, 2012.
[47]  G. E. Stoker, J. M. Buchowski, K. H. Bridwell, L. G. Lenke, K. D. Riew, and L. P. Zebala, “Preoperative vitamin D status of adults undergoing surgical spinal fusion,” Spine, vol. 38, no. 6, pp. 507–515, 2013.
[48]  S. Al Faraj and K. Al Mutairi, “Vitamin D deficiency and chronic low back pain in Saudi Arabia,” Spine, vol. 28, no. 2, pp. 177–179, 2003.
[49]  K. V. Knutsen, M. Brekke, S. Gjelstad, and P. Lagerl?v, “Vitamin D status in patients with musculoskeletal pain, fatigue and headache: a cross-sectional descriptive study in a multi-ethnic general practice in Norway,” Scandinavian Journal of Primary Health Care, vol. 28, no. 3, pp. 166–171, 2010.
[50]  J. MacLaughlin and M. F. Holick, “Aging decreases the capacity of human skin to produce vitamin D3,” Journal of Clinical Investigation, vol. 76, no. 4, pp. 1536–1538, 1985.
[51]  A. S. Growdon, C. A. Camargo Jr., S. Clark, M. Hannon, and J. M. Mansbach, “Serum 25-hydroxyvitamin D levels among Boston trainee doctors in winter,” Nutrients, vol. 4, no. 3, pp. 197–207, 2012.
[52]  T. L. Clemens, J. S. Adams, S. L. Henderson, and M. F. Holick, “Increased skin pigment reduces the capacity of skin to synthesise vitamin D3,” Lancet, vol. 1, no. 8263, pp. 74–76, 1982.
[53]  A. R. Webb, L. Kline, and M. F. Holick, “Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin,” Journal of Clinical Endocrinology and Metabolism, vol. 67, no. 2, pp. 373–378, 1988.
[54]  L. Y. Matsuoka, L. Ide, J. Wortsman, J. A. MacLaughlin, and M. F. Holick, “Sunscreens suppress cutaneous vitamin D3 synthesis,” Journal of Clinical Endocrinology and Metabolism, vol. 64, no. 6, pp. 1165–1168, 1987.
[55]  L. Y. Matsuoka, J. Wortsman, M. J. Dannenberg, B. W. Hollis, Z. Lu, and M. F. Holick, “Clothing prevents ultraviolet-B radiation-dependent photosynthesis of vitamin D3,” Journal of Clinical Endocrinology and Metabolism, vol. 75, no. 4, pp. 1099–1103, 1992.
[56]  G. El-Hajj Fuleihan, M. Nabulsi, M. Choucair et al., “Hypovitaminosis D in healthy schoolchildren,” Pediatrics, vol. 107, no. 4, p. E53, 2001.
[57]  S. Saintonge, H. Bang, and L. M. Gerber, “Implications of a new definition of vitamin D deficiency in a multiracial US adolescent population: the National Health and Nutrition Examination Survey III,” Pediatrics, vol. 123, no. 3, pp. 797–803, 2009.
[58]  G. Guardia, N. Parikh, T. Eskridge, E. Phillips, G. Divine, and D. S. Rao, “Prevalence of vitamin D depletion among subjects seeking advice on osteoporosis: a five-year cross-sectional study with public health implications,” Osteoporosis International, vol. 19, no. 1, pp. 13–19, 2008.
[59]  S. Arunabh, S. Pollack, J. Yeh, and J. F. Aloia, “Body fat content and 25-hydroxyvitamin D levels in healthy women,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 1, pp. 157–161, 2003.
[60]  G. E. Stoker, J. M. Buchowski, and M. E. Stoker, “Prior cholecystectomy as a predictor of preoperative vitamin D deficiency in adults undergoing spine surgery,” Archives of Surgery, vol. 147, no. 6, pp. 577–578, 2012.
[61]  E. Kamycheva, R. M. Joakimsen, and R. Jorde, “Intakes of calcium and vitamin D predict body mass index in the population of Northern Norway,” Journal of Nutrition, vol. 133, no. 1, pp. 102–106, 2003.
[62]  U. Grober and K. Kisters, “Influence of drugs on vitamin D and calcium metabolism,” Dermato-Endocrinology, vol. 4, no. 2, pp. 158–166, 2012.
[63]  M. F. Holick, “Vitamin D deficiency: what a pain it is,” Mayo Clinic Proceedings, vol. 78, no. 12, pp. 1457–1459, 2003.
[64]  S. S. Hannah and A. W. Norman, “1α,25(OH)2 vitamin D3-regulated expression of the eukaryotic genome,” Nutrition Reviews, vol. 52, no. 11, pp. 376–382, 1994.
[65]  R. S. Khoury, J. Weber, and M. C. Farach-Carson, “Vitamin D metabolites modulate osteoblast activity by Ca+2 influx- independent genomic and Ca+2 influx-dependent nongenomic pathways,” Journal of Nutrition, vol. 125, no. 6, supplement, pp. 1699S–1703S, 1995.
[66]  L. N. Drittanti, R. L. Boland, and A. R. de Boland, “Induction of specific proteins in cultured skeletal muscle cells by 1,25-dihydroxyvitamin D-3,” Biochimica et Biophysica Acta, vol. 1012, no. 1, pp. 16–23, 1989.
[67]  I. Nemere and A. W. Norman, “Transcaltachia, vesicular calcium transport, and microtubule-associated calbindin-D(28K): emerging views of 1,25-dihydroxyvitamin D3-mediated intestinal calcium absorption,” Mineral and Electrolyte Metabolism, vol. 16, no. 2-3, pp. 109–114, 1990.
[68]  I. Nemere, V. Leathers, and A. W. Norman, “1,25-dihydroxyvitamin D3-mediated intestinal calcium transport. Biochemical identification of lysosomes containing calcium and calcium-binding protein (Calbindin-D(28K)),” Journal of Biological Chemistry, vol. 261, no. 34, pp. 16106–16114, 1986.
[69]  Z. Xiaoyu, B. Payal, O. Melissa, and L. P. Zanello, “1α,25(OH)2-vitamin D3 membrane-initiated calcium signaling modulates exocytosis and cell survival,” Journal of Steroid Biochemistry and Molecular Biology, vol. 103, no. 3–5, pp. 457–461, 2007.
[70]  A. Minasyan, T. Keisala, J. Zou et al., “Vestibular dysfunction in vitamin D receptor mutant mice,” Journal of Steroid Biochemistry and Molecular Biology, vol. 114, no. 3–5, pp. 161–166, 2009.
[71]  T. H. J. Burne, J. J. McGrath, D. W. Eyles, and A. Mackay-Sim, “Behavioural characterization of vitamin D receptor knockout mice,” Behavioural Brain Research, vol. 157, no. 2, pp. 299–308, 2005.
[72]  I. Endo, D. Inoue, T. Mitsui et al., “Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors,” Endocrinology, vol. 144, no. 12, pp. 5138–5144, 2003.
[73]  S. Ikegami, M. Kamimura, S. Uchiyama, and H. Kato, “Women with insufficient 25-hydroxyvitamin D without secondary hyperparathyroidism have altered bone turnover and greater incidence of vertebral fractures,” Journal of Orthopaedic Science, vol. 16, no. 5, pp. 573–580, 2011.
[74]  O. Sahota, M. K. Mundey, P. San, I. M. Godber, N. Lawson, and D. J. Hosking, “The relationship between vitamin D and parathyroid hormone: calcium homeostasis, bone turnover, and bone mineral density in postmenopausal women with established osteoporosis,” Bone, vol. 35, no. 1, pp. 312–319, 2004.
[75]  O. Sahota, T. Masud, P. San, and D. J. Hosking, “Vitamin D insufficiency increases bone turnover markers and enhances bone loss at the hip in patients with established vertebral osteoporosis,” Clinical Endocrinology, vol. 51, no. 2, pp. 217–221, 1999.
[76]  D. Jesudason, A. G. Need, M. Horowitz, P. D. O'Loughlin, H. A. Morris, and B. E. C. Nordin, “Relationship between serum 25-hydroxyvitamin D and bone resorption markers in vitamin D insufficiency,” Bone, vol. 31, no. 5, pp. 626–630, 2002.
[77]  M. Kogawa, D. M. Findlay, P. H. Anderson et al., “Osteoclastic metabolism of 25(OH)-vitamin D3: a potential mechanism for optimization of bone resorption,” Endocrinology, vol. 151, no. 10, pp. 4613–4625, 2010.
[78]  H. Takasu, A. Sugita, Y. Uchiyama et al., “c-Fos protein as a target of anti-osteoclastogenic action of vitamin D, and synthesis of new analogs,” Journal of Clinical Investigation, vol. 116, no. 2, pp. 528–535, 2006.
[79]  A. P. Mee, J. A. Hoyland, I. P. Braidman, A. J. Freemont, M. Davies, and E. B. Mawer, “Demonstration of vitamin D receptor transcripts in actively resorbing osteoclasts in bone sections,” Bone, vol. 18, no. 4, pp. 295–299, 1996.
[80]  D. S. Wang, M. Miura, H. Demura, and K. Sato, “Anabolic effects of 1,25-dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells,” Endocrinology, vol. 138, no. 7, pp. 2953–2962, 1997.
[81]  S. Takeda, T. Yoshizawa, Y. Nagai et al., “Stimulation of osteoclast formation by 1,25-dihydroxyvitamin D requires its binding to vitamin D receptor (VDR) in osteoblastic cells: studies using VDR knockout mice,” Endocrinology, vol. 140, no. 2, pp. 1005–1008, 1999.
[82]  R. Masuyama, I. Stockmans, S. Torrekens et al., “Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts,” Journal of Clinical Investigation, vol. 116, no. 12, pp. 3150–3159, 2006.
[83]  L. Fu, T. Tang, Y. Miao, Y. Hao, and K. Dai, “Effect of 1,25-dihydroxy vitamin D3 on fracture healing and bone remodeling in ovariectomized rat femora,” Bone, vol. 44, no. 5, pp. 893–898, 2009.
[84]  P. F. Brumbaugh, D. P. Speer, and M. J. Pitt, “1α,25-dihydroxyvitamin D3. A metabolite of vitamin D that promotes bone repair,” American Journal of Pathology, vol. 106, no. 2, pp. 171–179, 1982.
[85]  A. D. Delgado-Martinez, M. E. Martinez, M. T. Carrascal, M. Rodriguez-Avial, and L. Munuera, “Effect of 25-OH-vitamin D on fracture healing in elderly rats,” Journal of Orthopaedic Research, vol. 16, no. 6, pp. 650–653, 1998.
[86]  A. M. Doetsch, J. Faber, N. Lynnerup, I. W?tjen, H. Bliddal, and B. Danneskiold-Sams?e, “The effect of calcium and vitamin D3 supplementation on the healing of the proximal humerus fracture: a randomized placebo-controlled study,” Calcified Tissue International, vol. 75, no. 3, pp. 183–188, 2004.
[87]  R. U. Simpson, G. A. Thomas, and A. J. Arnold, “Identification of 1,25-dihydroxyvitamin D3 receptors and activities in muscle,” Journal of Biological Chemistry, vol. 260, no. 15, pp. 8882–8891, 1985.
[88]  H. A. Bischoff, M. Borchers, F. Gudat et al., “In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue,” Histochemical Journal, vol. 33, no. 1, pp. 19–24, 2001.
[89]  E. M. Costa, H. M. Blau, and D. Feldman, “1,25-dihydroxyvitamin D3 receptors and hormonal responses in cloned human skeletal muscle cells,” Endocrinology, vol. 119, no. 5, pp. 2214–2220, 1986.
[90]  G. Vazquez, A. R. de Boland, and R. Boland, “Stimulation of Ca2+ release-activated Ca2+ channels as a potential mechanism involved in non-genomic 1,25(OH)2-vitamin D3-induced Ca2+ entry in skeletal muscle cells,” Biochemical and Biophysical Research Communications, vol. 239, no. 2, pp. 562–565, 1997.
[91]  A. R. de Boland, S. Gallego, and R. Boland, “Effects of vitamin D-3 on phosphate and calcium transport across and composition of skeletal muscle plasma cell membranes,” Biochimica et Biophysica Acta, vol. 733, no. 2, pp. 264–273, 1983.
[92]  L. Drittanti, A. R. de Boland, and R. Boland, “Stimulation of calmodulin synthesis in proliferating myoblasts by 1,25-dihydroxy-vitamin D3,” Molecular and Cellular Endocrinology, vol. 74, no. 2, pp. 143–153, 1990.
[93]  L. Drittanti, A. R. de Boland, and R. L. Boland, “Effects of 1,25-dihydroxyvitamin D-3 on phospholipid metabolism in chick myoblasts,” Biochimica et Biophysica Acta, vol. 962, no. 1, pp. 1–7, 1988.
[94]  D. A. Capiati, G. Vazquez, M. T. Tellez Inon, and R. L. Boland, “Role of protein kinase C in 1,25(OH)2-vitamin D3 modulation of intracellular calcium during development of skeletal muscle cells in culture,” Journal of Cellular Biochemistry, vol. 77, no. 2, pp. 200–212, 2000.
[95]  C. Buitrago, R. Boland, and A. R. de Boland, “The tyrosine kinase c-Src is required for 1,25(OH)2-vitamin D3 signalling to the nucleus in muscle cells,” Biochimica et Biophysica Acta, vol. 1541, no. 3, pp. 179–187, 2001.
[96]  S. Morelli, C. Buitrago, G. Vazquez, A. R. de Boland, and R. Boland, “Involvement of tyrosine kinase activity in 1α,25(OH)2-vitamin D3 signal transduction in skeletal muscle cells,” Journal of Biological Chemistry, vol. 275, no. 46, pp. 36021–36028, 2000.
[97]  C. G. Buitrago, N. S. Arango, and R. L. Boland, “1α, 25(OH)2D3-dependent modulation of Akt in proliferating and differentiating C2C12 skeletal muscle cells,” Journal of Cellular Biochemistry, vol. 113, no. 4, pp. 1170–1181, 2012.
[98]  Y. Al-Said, H. Al-Rached, H. Al-Qahtani, and M. Jan, “Severe proximal myopathy with remarkable recovery after vitamin D treatment,” Canadian Journal of Neurological Sciences, vol. 36, no. 3, pp. 336–339, 2009.
[99]  H. Glerup, K. Mikkelsen, L. Poulsen et al., “Hypovitaminosis D myopathy without biochemical signs of osteomalacic bone involvement,” Calcified Tissue International, vol. 66, no. 6, pp. 419–424, 2000.
[100]  K. Ekbom, R. Hed, L. Kirstein, and K. E. Astroem, “Weakness of proximal limb muscles, probably due to myopathy after partial gastrectomy. Preliminary report,” Acta Medica Scandinavica, vol. 176, pp. 493–496, 1964.
[101]  J. W. Prineas, A. S. Mason, and R. A. Henson, “Myopathy in metabolic bone disease,” British Medical Journal, vol. 1, no. 5441, pp. 1034–1036, 1965.
[102]  D. N. Golding, “Muscle pain and wasting in osteomalacia,” Journal of the Royal Society of Medicine, vol. 78, no. 6, pp. 495–496, 1985.
[103]  A. J. Reginato, G. F. Falasca, R. Pappu, B. McKnight, and A. Agha, “Musculoskeletal manifestations of osteomalacia: report of 26 cases and literature review,” Seminars in Arthritis and Rheumatism, vol. 28, no. 5, pp. 287–304, 1999.
[104]  K. Ekbom, R. Hed, L. Kirstein, and K. E. Astroem, “Myopathy in metabolic bone disease,” British Medical Journal, vol. 1, no. 5451, pp. 1670–1671, 1965.
[105]  J. K. Dhesi, L. M. Bearne, C. Moniz et al., “Neuromuscular and psychomotor function in elderly subjects who fall and the relationship with vitamin D status,” Journal of Bone and Mineral Research, vol. 17, no. 5, pp. 891–897, 2002.
[106]  M. Visser, D. J. H. Deeg, and P. Lips, “Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 12, pp. 5766–5772, 2003.
[107]  J. F. J. B. Nellen, Y. M. Smulders, P. H. J. Frissen, E. H. Slaats, and J. Silberbusch, “Hypovitaminosis D in immigrant women: slow to be diagnosed,” British Medical Journal, vol. 312, no. 7030, pp. 570–572, 1996.
[108]  J. Mytton, A. P. Frater, G. Oakley, E. Murphy, M. J. Barber, and S. Jahfar, “Vitamin D deficiency in multicultural primary care: a case series of 299 patients,” British Journal of General Practice, vol. 57, no. 540, pp. 577–579, 2007.
[109]  G. de Torrenté de La Jara, A. Pécoud, and B. Favrat, “Female asylum seekers with musculoskeletal pain: the importance of diagnosis and treatment of hypovitaminosis D,” BMC Family Practice, vol. 7, article 4, 2006.
[110]  O. H. Sorensen, B. Lund, B. Saltin et al., “Myopathy in bone loss of ageing: improvement by treatment with 1α-hydroxycholecalciferol and calcium,” Clinical Science, vol. 56, no. 2, pp. 157–161, 1979.
[111]  H. A. Bischoff, H. B. St?helin, W. Dick et al., “Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial,” Journal of Bone and Mineral Research, vol. 18, no. 2, pp. 343–351, 2003.
[112]  F. M. Gloth III, C. E. Smith, B. W. Hollis, and J. D. Tobin, “Functional improvement with vitamin D replenishment in a cohort of frail, vitamin D-deficient older people,” Journal of the American Geriatrics Society, vol. 43, no. 11, pp. 1269–1271, 1995.
[113]  L. Ceglia, “Vitamin D and its role in skeletal muscle,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 12, no. 6, pp. 628–633, 2009.
[114]  Y. Sato, J. Iwamoto, T. Kanoko, and K. Satoh, “Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial,” Cerebrovascular Diseases, vol. 20, no. 3, pp. 187–192, 2005.
[115]  M. Pfeifer, B. Begerow, H. W. Minne et al., “Vitamin D status, trunk muscle strength, body sway, falls, and fractures among 237 postmenopausal women with osteoporosis,” Experimental and Clinical Endocrinology and Diabetes, vol. 109, no. 2, pp. 87–92, 2001.
[116]  M. Z. Erkal, J. Wilde, Y. Bilgin et al., “High prevalence of vitamin D deficiency, secondary hyperparathyroidism and generalized bone pain in Turkish immigrants in Germany: identification of risk factors,” Osteoporosis International, vol. 17, no. 8, pp. 1133–1140, 2006.
[117]  W. Ahmed, N. Khan, C. J. Glueck et al., “Low serum 25 (OH) vitamin D levels (<32 ng/mL) are associated with reversible myositis-myalgia in statin-treated patients,” Translational Research, vol. 153, no. 1, pp. 11–16, 2009.
[118]  A. W. M. Fok and T. P. Ng, “Osteomalacia: a case series of patients with atypical clinical orthopaedic presentations,” Hong Kong Medical Journal, vol. 16, no. 6, pp. 476–479, 2010.
[119]  M. K. Turner, W. M. Hooten, J. E. Schmidt, J. L. Kerkvliet, C. O. Townsend, and B. K. Bruce, “Prevalence and clinical correlates of vitamin D inadequacy among patients with chronic pain,” Pain Medicine, vol. 9, no. 8, pp. 979–984, 2008.
[120]  H. Badsha, M. Daher, and K. Ooi Kong, “Myalgias or non-specific muscle pain in Arab or Indo-Pakistani patients may indicate vitamin D deficiency,” Clinical Rheumatology, vol. 28, no. 8, pp. 971–973, 2009.
[121]  S. E. Tague, G. L. Clarke, M. K. Winter, K. E. McCarson, D. E. Wright, and P. G. Smith, “Vitamin D deficiency promotes skeletal muscle hypersensitivity and sensory hyperinnervation,” The Journal of Neuroscience, vol. 31, no. 39, pp. 13728–13738, 2011.
[122]  S. E. Tague and P. G. Smith, “Vitamin D receptor and enzyme expression in dorsal root ganglia of adult female rats: modulation by ovarian hormones,” Journal of Chemical Neuroanatomy, vol. 41, no. 1, pp. 1–12, 2011.
[123]  T. Akamaru, D. Suh, S. D. Boden, H. S. Kim, A. Minamide, and J. Louis-Ugbo, “Simple carrier matrix modifications can enhance delivery of recombinant human bone morphogenetic protein-2 for posterolateral spine fusion,” Spine, vol. 28, no. 5, pp. 429–434, 2003.
[124]  T. Nakajima, H. Iizuka, S. Tsutsumi, M. Kayakabe, and K. Takagishi, “Evaluation of posterolateral spinal fusion using mesenchymal stem cells: differences with or without osteogenic differentiation,” Spine, vol. 32, no. 22, pp. 2432–2436, 2007.
[125]  G. Cinotti, A. Corsi, B. Sacchetti, M. Riminucci, P. Bianco, and G. Giannicola, “Bone ingrowth and vascular supply in experimental spinal fusion with platelet-rich plasma,” Spine, vol. 38, no. 5, pp. 385–391, 2013.
[126]  C. P. Dipaola, J. E. Bible, D. Biswas, M. Dipaola, J. N. Grauer, and G. R. Rechtine, “Survey of spine surgeons on attitudes regarding osteoporosis and osteomalacia screening and treatment for fractures, fusion surgery, and pseudoarthrosis,” Spine Journal, vol. 9, no. 7, pp. 537–544, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133