Purpose. The purpose of this paper is to present our technique for the treatment of periplate fractures. Methods. From 2009 to 2012 we treated three patients. In all cases the existing plate was left and the new one placed over the existing. Locking screws were placed through both plates. The other screws in the new plate were used as best suited the fracture. Results. In all cases less than 6 months had passed between fractures. None of the original fractures had healed. Mean followup was 2 years. All fractures proceeded to union within 7 months. No complications were recorded. All the patients returned to their normal activities and were satisfied with the results of their treatment. Conclusion. Our plate on plate technique is effective for the treatment of periplate fractures. A solid fusion can be achieved at the new fracture site without disturbing the previous fixation. 1. Introduction Fractures are becoming more common with the increase in the ageing population. This has led to more patients requiring internal fixation to enable adequate healing and rehabilitation. Osteoporotic bone has a decreased healing capacity and a higher rate of implant failure [1, 2]. Additionally the interface between end of the plate and the osteoporotic bone is often a stress riser and may lead to periplate fracture [3]. This combined with an increased tendency to recurrent falls can all lead to an increasing frequency of peri-implant fractures. The treatment of periprosthetic and perinail fractures is well reported in the literature [4, 5]. In contrast there is paucity of reports in the literature regarding the treatment of fractures around plates, especially when the first fracture has not healed. The purpose of this paper is to present our experience using a locking plate on top of the existing plate for the treatment of such fractures. 2. Patients and Methods From 2009 to 2012 three consecutive female patients presented to our unit after sustaining a fracture around a locking plate (Table 1). In all cases the initial osteosynthesis was performed by another surgeon and less than six months had passed between the first osteosynthesis and the subsequent fracture around the plate. All procedures were performed by the senior author. All patients were followed up until fracture union. All plates, existing and second, were made of stainless steel and manufactured by Depuy-SYNTHES (Leeds, UK). Table 1: Case series and data. In all cases we made preoperative plans to leave the existing plate in situ and to utilize part of the original approach and extend it to allow a new
References
[1]
P. Giannoudis, C. Tzioupis, T. Almalki, and R. Buckley, “Fracture healing in osteoporotic fractures: is it really different? A basic science perspective,” Injury, vol. 38, supplement 1, pp. S90–S99, 2007.
[2]
V. S. Nikolaou, N. Efstathopoulos, G. Kontakis, N. K. Kanakaris, and P. V. Giannoudis, “The influence of osteoporosis in femoral fracture healing time,” Injury, vol. 40, no. 6, pp. 663–668, 2009.
[3]
A. A. Kawoosa, S. A. Dhar, M. F. Butt, G. N. Dar, and M. R. Mir, “The role of composite technique in managing peri implant re-fractures in a case with supracondylar fracture of the femur: a case report,” Cases Journal, vol. 2, no. 6, article 8174, 2009.
[4]
S. Ruchholtz, B. El-Zayat, D. Kreslo et al., “Less invasive polyaxial locking plate fixation in periprosthetic and peri-implant fractures of the femur—a prospective study of 41 patients,” Injury, vol. 44, no. 2, pp. 239–248, 2013.
[5]
M. Ehlinger, P. Adam, A. Di Marco, Y. Arlettaz, B.-K. Moor, and F. Bonnomet, “Periprosthetic femoral fractures treated by locked plating: feasibility assessment of the mini-invasive surgical option. A prospective series of 36 fractures,” Orthopaedics & Traumatology, vol. 97, no. 6, pp. 622–628, 2011.
[6]
A. Cranney, P. Tugwell, N. Zytaruk et al., “Meta-analysis of raloxifene for the prevention and treatment of postmenopausal osteoporosis,” Endocrine Reviews, vol. 23, no. 4, pp. 524–528, 2002.
[7]
K. Str?ms?e, “Fracture fixation problems in osteoporosis,” Injury, vol. 35, no. 2, pp. 107–113, 2004.
[8]
N. C. Tejwani and E. Guerado, “Improving fixation of the osteoporotic fracture: the role of locked plating,” Journal of Orthopaedic Trauma, vol. 25, supplement 2, pp. S56–S60, 2011.
[9]
K. A. Egol, E. N. Kubiak, E. Fulkerson, F. J. Kummer, and K. J. Koval, “Biomechanics of locked plates and screws,” Journal of Orthopaedic Trauma, vol. 18, no. 8, pp. 488–493, 2004.
[10]
W. R. Smith, B. H. Ziran, J. O. Anglen, and P. F. Stahel, “Locking plates: tips and tricks,” Instructional Course Lectures, vol. 57, pp. 25–36, 2008.
[11]
M. A. Miranda, “Locking plate technology and its role in osteoporotic fractures,” Injury, vol. 38, supplement 3, pp. S35–S39, 2007.
[12]
C. Davis, A. Stall, E. Knutsen et al., “Locking plates in osteoporosis: a biomechanical cadaveric study of diaphyseal humerus fractures,” Journal of Orthopaedic Trauma, vol. 26, no. 4, pp. 216–221, 2012.
[13]
G. J. Haidukewych, “Innovations in locking plate technology,” The Journal of the American Academy of Orthopaedic Surgeons, vol. 12, no. 4, pp. 205–212, 2004.
[14]
C. Sommer, E. Gautier, M. Müller, D. L. Helfet, and M. Wagner, “First clinical results of the Locking Compression Plate (LCP),” Injury, vol. 34, supplement 2, pp. SB43–SB54, 2003.
[15]
M. Wagner, “General principles for the clinical use of the LCP,” Injury, vol. 34, supplement 2, pp. B31–B42, 2003.
[16]
T. Harris, J. T. Ruth, J. Szivek, and B. Haywood, “The effect of implant overlap on the mechanical properties of the femur,” Journal of Traumas, vol. 54, no. 5, pp. 930–935, 2003.
[17]
P. J. H?l, A. M?lster, and N. R. Gjerdet, “Should the galvanic combination of titanium and stainless steel surgical implants be avoided?” Injury, vol. 39, no. 2, pp. 161–169, 2008.
[18]
J. A. Disegi and H. Wyss, “Implant materials for fracture fixation: a clinical perspective,” Orthopedics, vol. 12, no. 1, pp. 75–79, 1989.
[19]
J. Disegi, “Wrought 18% chromium-14% nickel-2.5% molybdenum stainless steel implant material,” in AO ASIF Materials Technical Commission, 1998.
[20]
K.-T. Park and K.-B. Lee, “Extensive metallosis caused by plate and screw construct for distal fibular fracture—a case report,” Journal of the Korean Fracture Society, vol. 26, no. 2, pp. 147–150, 2013.
[21]
Y. Edelstein, H. Ohm, and Y. Rosen, “Metallosis and pseudotumor after failed ORIF of a humeral fracture,” Bulletin of the NYU Hospital for Joint Diseases, vol. 69, no. 2, pp. 188–191, 2011.
[22]
R. Kang and P. J. Stern, “Humeral nonunion associated with metallosis secondary to use of a titanium flexible humeral intramedullary nail: a case report,” The Journal of Bone and Joint Surgery. American, vol. 84-A, no. 12, pp. 2266–2269, 2002.
[23]
M. E. Müller, M. Allg?wer, and H. Willenegger, Manual of Internal Fixation: Technique Recommended by the AO-Group, Springer, 1970.