全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Treatment of Skeletal Muscle Injury: A Review

DOI: 10.5402/2012/689012

Full-Text   Cite this paper   Add to My Lib

Abstract:

Skeletal muscle injuries are the most common sports-related injuries and present a challenge in primary care and sports medicine. Most types of muscle injuries would follow three stages: the acute inflammatory and degenerative phase, the repair phase and the remodeling phase. Present conservative treatment includes RICE (rest, ice, compression, elevation), nonsteroidal anti-inflammatory drugs (NSAIDs) and physical therapy. However, if use improper, NSAIDs may suppress an essential inflammatory phase in the healing of injured skeletal muscle. Furthermore, it remains controversial whether or not they have adverse effects on the healing process or on the tensile strength. However, several growth factors might promote the regeneration of injured skeletal muscle, many novel treatments have involved on enhancing complete functional recovery. Exogenous growth factors have been shown to regulate satellite cell proliferation, differentiation and fusion in myotubes in vivo and in vitro, TGF-β1 antagonists behave as inhibitors of TGF-β1. They prevent collagen deposition and block formation of muscle fibrosis, so that a complete functional recovery can be achieved. 1. Introduction Skeletal muscle injuries are the most common sports-related injuries and present a challenge in primary care and sports medicine. Athletes sustain muscle injuries through a variety of mechanisms, including direct trauma (e.g., lacerations, strains, and contusions) and indirect injuries (related to ischemia and neurological dysfunctions). A regeneration process that is similar in most types of muscle injuries, has been observed. However, complete recovery from the injury is compromised due to the development of fibrosis in the second week after the injury. The formed scar tissue always is mechanically inferior and therefore much less able to perform the functions of a normal muscle fiber. It is also more susceptible to reinjury [1, 2]. To minimize the disability and enhance full functional recovery after skeletal muscle injuries, the current conservative treatment includes limiting the bleeding with compression, elevation, and local cooling, nonsteroidal anti-inflammatory drugs (NSAIDs), and physical therapy [3]. Recently, it has been suggested that growth factors might promote the regeneration of injured skeletal muscle, and many novel treatments have been developed. This review paper focuses on therapeutic approaches including new knowledge of routine NSAIDs, novel biological repair, and physical therapy. A search of the literature on the treatment of skeletal muscle injuries was

References

[1]  J. Menetrey, C. Kasemkijwattana, C. S. Day et al., “Growth factors improve muscle healing in vivo,” Journal of Bone and Joint Surgery B, vol. 82, no. 1, pp. 131–137, 2000.
[2]  W. A. Border and N. A. Noble, “Transforming growth factor β in tissue fibrosis,” The New England Journal of Medicine, vol. 331, no. 19, pp. 1286–1292, 1994.
[3]  T. A. H. J?rvinen, T. L. N. J?rvinen, M. K??ri?inen, H. Kalimo, and M. J?rvinen, “Muscle injuries: biology and treatment,” American Journal of Sports Medicine, vol. 33, no. 5, pp. 745–764, 2005.
[4]  E. D. Arrington and M. D. Miller, “Skeletal muscle injuries,” Orthopedic Clinics of North America, vol. 26, no. 3, pp. 411–422, 1995.
[5]  J. G. Tidball, “Inflammatory processes in muscle injury and repair,” American Journal of Physiology, vol. 288, no. 2, pp. R345–R353, 2005.
[6]  K. Fukushima, N. Badlani, A. Usas, F. Riano, F. H. Fu, and J. Huard, “The use of an antifibrosis agent to improve muscle recovery after laceration,” American Journal of Sports Medicine, vol. 29, no. 4, pp. 394–402, 2001.
[7]  A. P. Sappino, W. Schurch, and G. Gabbiani, “Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations,” Laboratory Investigation, vol. 63, no. 2, pp. 144–161, 1990.
[8]  M. U. K. Lehto and M. J. Jarvinen, “Muscle injuries, their healing process and treatment,” Annales Chirurgiae et Gynaecologiae, vol. 80, no. 2, pp. 102–108, 1991.
[9]  C. F. P. Teixeira, S. R. Zamunér, J. P. Zuliani et al., “Neutrophils do not contribute to local tissue damage, but play a key role in skeletal muscle regeneration, in mice injected with Bothrops asper snake venom,” Muscle & Nerve, vol. 28, no. 4, pp. 449–459, 2003.
[10]  J. Rantanen, T. Hurme, R. Lukka, J. Heino, and H. Kalimo, “Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells,” Laboratory Investigation, vol. 72, no. 3, pp. 341–347, 1995.
[11]  T. E. Takala and P. Virtanen, “Biochemical composition of muscle extracellular matrix: the effect of loading,” Scandinavian Journal of Medicine and Science in Sports, vol. 10, no. 6, pp. 321–325, 2000.
[12]  F. H. Fu, K. R. Weiss, and B. A. Zelle, “Reducing the recovery time after muscle injuries: the accelerated rehabilitation of the injured athlete,” in Proceedings of the 14th International Congress on Sports Rehabilitation and Traumatology, Bologna, Italy, April 2005.
[13]  S. B. P. Chargé and M. A. Rudnicki, “Cellular and molecular regulation of muscle regeneration,” Physiological Reviews, vol. 84, no. 1, pp. 209–238, 2004.
[14]  J. G. Tidball, “Inflammatory cell response to acute muscle injury,” Medicine and Science in Sports and Exercise, vol. 27, no. 7, pp. 1022–1032, 1995.
[15]  J. M. Beiner and P. Jokl, “Muscle contusion injuries: current treatment options,” The Journal of the American Academy of Orthopaedic Surgeons, vol. 9, no. 4, pp. 227–237, 2001.
[16]  L. C. Almekinders and J. A. Gilbert, “Healing of experimental muscle strains and the effects of nonsteroidal antiinflammatory medication,” American Journal of Sports Medicine, vol. 14, no. 4, pp. 303–308, 1986.
[17]  J. Paoloni, C. Milne, J. Orchard, and B. Hamilton, “Non-steroidal anti-inflammatory drugs (NSAIDs) in sports medicine: guidelines for practical but sensible use,” British Journal of Sports Medicine, vol. 43, no. 11, pp. 863–865, 2009.
[18]  F. T. G. Rahusen, P. S. Weinhold, and L. C. Almekinders, “Nonsteroidal anti-inflammatory drugs and acetaminophen in the treatment of an acute muscle injury,” American Journal of Sports Medicine, vol. 32, no. 8, pp. 1856–1859, 2004.
[19]  C. Woodard, “What is active treatment?” Sports Medicine, pp. 1–14, 1954.
[20]  T. A. Trappe, F. White, C. P. Lambert, D. Cesar, M. Hellerstein, and W. J. Evans, “Effect of ibuprofen and acetaminophen on postexercise muscle protein synthesis,” American Journal of Physiology, vol. 282, pp. 551–556, 2002.
[21]  L. C. Almekinders, “Anti-inflammatory treatment of muscular injuries in sports,” Sports Medicine, vol. 15, no. 3, pp. 139–145, 1993.
[22]  R. Engelberg, D. P. Martin, J. Agel, W. Obremsky, G. Coronado, and M. F. Swiontkowski, “Musculoskeletal function assessment instrument: criterion and construct validity,” Journal of Orthopaedic Research, vol. 14, no. 2, pp. 182–192, 1996.
[23]  B. M. Carlson and J. A. Faulkner, “The regeneration of skeletal muscle fibers following injury: a review,” Medicine and Science in Sports and Exercise, vol. 15, no. 3, pp. 187–198, 1983.
[24]  M. K??ri?inen, T. J?rvinen, M. J?rvinen, J. Rantanen, and H. Kalimo, “Relation between myofibers and connective tissue during muscle injury repair,” Scandinavian Journal of Medicine and Science in Sports, vol. 10, no. 6, pp. 332–337, 2000.
[25]  V. Sartorelli and M. Fulco, “Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy.,” Science's STKE, vol. 2004, no. 244, p. re11, 2004.
[26]  C. A. Mitchell, J. K. McGeachie, and M. D. Grounds, “The exogenous administration of basic fibroblast growth factor to regenerating skeletal muscle in mice does not enhance the process of regeneration,” Growth Factors, vol. 13, no. 1-2, pp. 37–55, 1996.
[27]  A. S. Armand, T. Launay, C. Pariset, B. Della Gaspera, F. Charbonnier, and C. Chanoine, “Injection of FGF6 accelerates regeneration of the soleus muscle in adult mice,” Biochimica et Biophysica Acta, vol. 1642, no. 1-2, pp. 97–105, 2003.
[28]  T. Takahashi, K. Ishida, K. Itoh et al., “IGF-I gene transfer by electroporation promotes regeneration in a muscle injury model,” Gene Therapy, vol. 10, no. 8, pp. 612–620, 2003.
[29]  J. Huard, Y. Li, and F. H. Fu, “Muscle injuries and repair: current trends in research,” Journal of Bone and Joint Surgery A, vol. 84, no. 5, pp. 822–832, 2002.
[30]  C. Kasemkijwattana, J. Menetrey, P. Bosch et al., “Use of growth factors to improve muscle healing after strain injury,” Clinical Orthopaedics and Related Research, no. 370, pp. 272–285, 2000.
[31]  K. J. Miller, D. Thaloor, S. Matteson, and G. K. Pavlath, “Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle,” American Journal of Physiology, vol. 278, no. 1, pp. C174–C181, 2000.
[32]  C. Kasemkijwattana, J. Menetrey, G. Somogyi et al., “Development of approaches to improve the healing following muscle contusion,” Cell Transplantation, vol. 7, no. 6, pp. 585–598, 1998.
[33]  Y. S. Chan, Y. Li, W. Foster, F. H. Fu, and J. Huard, “The use of suramin, an antifibrotic agent, to improve muscle recovery after strain injury,” American Journal of Sports Medicine, vol. 33, no. 1, pp. 43–51, 2005.
[34]  M. Nozaki, Yong Li, Jinhong Zhu et al., “Improved muscle healing after contusion injury by the inhibitory effect of suramin on myostatin, a negative regulator of muscle growth,” American Journal of Sports Medicine, vol. 36, no. 12, pp. 2354–2362, 2008.
[35]  J. Menetrey, C. Kasemkijwattana, F. H. Fu, M. S. Moreland, and J. Huard, “Suturing versus immobilization of a muscle laceration: a morphological and functional study in a mouse model,” American Journal of Sports Medicine, vol. 27, no. 2, pp. 222–229, 1999.
[36]  F. A. Beebe, R. L. Barkin, and S. Barkin, “A clinical and pharmacologic review of skeletal muscle relaxants for musculoskeletal conditions,” American Journal of Therapeutics, vol. 12, no. 2, pp. 151–171, 2005.
[37]  D. Reid, Sports Injury Assessment and Rehabilitation, Churchill Livingstone, 1st edition, 1992.
[38]  D. K. Mishra, J. Friden, M. C. Schmitz, and R. L. Lieber, “Anti-inflammatory medication after muscle injury: a treatment resulting in short-term improvement but subsequent loss of muscle function,” Journal of Bone and Joint Surgery A, vol. 77, no. 10, pp. 1510–1519, 1995.
[39]  A. J. Windebank and J. F. Poduslo, “Neuronal growth factors produced by adult peripheral nerve after injury,” Brain Research, vol. 385, no. 1, pp. 197–200, 1986.
[40]  H. Matsuda, H. Koyama, H. Sato et al., “Role of nerve growth factor in cutaneous wound healing: accelerating effects in normal and healing-impaired diabetic mice,” Journal of Experimental Medicine, vol. 187, no. 3, pp. 297–306, 1998.
[41]  D. Le Roith, “The insulin-like growth factor system,” Experimental Diabesity Research, vol. 4, no. 4, pp. 205–212, 2003.
[42]  T. Wright-Carpenter, P. Opolon, H. J. Appell, H. Meijer, P. Wehling, and L. M. Mir, “Treatment of muscle injuries by local administration of autologous conditioned serum: animal experiments using a muscle contusion model,” International Journal of Sports Medicine, vol. 25, no. 8, pp. 582–587, 2004.
[43]  J. R. Florini, A. B. Roberts, D. Z. Ewton, S. L. Falen, K. C. Flanders, and M. B. Sporn, “Transforming growth factor-beta: a very potent inhibitor of myoblast differentiation, identical to the differentiation inhibitor secreted by buffalo rat liver cells,” The Journal of Biological Chemistry, vol. 261, pp. 16509–16513, 1986.
[44]  Y. S. Chan, Y. Li, W. Foster et al., “Antifibrotic effects of suramin in injured skeletal muscle after laceration,” Journal of Applied Physiology, vol. 95, no. 2, pp. 771–780, 2003.
[45]  G. R. Adams, “Insulin-like growth factor in muscle growth and its potential abuse by athletes,” British Journal of Sports Medicine, vol. 34, no. 6, pp. 412–413, 2000.
[46]  T. O. Clanton and K. J. Coupe, “Hamstring strains in athletes: diagnosis and treatment.,” The Journal of the American Academy of Orthopaedic Surgeons, vol. 6, no. 4, pp. 237–248, 1998.
[47]  J. Huard, Y. Li, H. Peng, and F. H. Fu, “Gene therapy and tissue engineering for sports medicine,” Journal of Gene Medicine, vol. 5, no. 2, pp. 93–108, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133