Background. Compartment syndrome is a serious complication that might occur following fractures. The treatment of choice is emergent fasciotomy of all the involved muscle compartments to lower the compartment pressure. The classic management of fasciotomy wounds was split thickness skin graft. Patients and Methods. Seventeen patients with fracture-related compartment syndrome were managed by fasciotomy in the Orthopaedic Casualty Unit of our university hospital. The fractures included four femoral fractures and 13 fractures of the tibia and fibula. Results. All fasciotomy wounds healed eventually. Wound closure occurred from the corners inward. The skin closure was obtained at an overall average of 4.2 tightening sessions (range 3–7). Fracture healing occurred at an average of 15.4 weeks (range 12 to 22 weeks). No major complications were encountered in this series. Conclusion. Closure of fasciotomy wounds by dermatotraction could be performed in a staged fashion, using inexpensive equipment readily available in any standard operating room, until skin was approximated enough to heal either through delayed primary closure or secondary healing. 1. Introduction Compartment syndrome is a serious complication that might occur following fractures. Untreated, it would cause serious damage to the nervous and muscular structures of the involved compartment(s), which might lead to serious and permanent functional deficit of the involved limb. The treatment of choice is emergent fasciotomy of all the involved muscle compartments to lower the compartment pressure [1–4]. Fasciotomy wounds can seldom be closed primarily because muscles under tension bulge through the wound making primary closure not feasible. The classic management of fasciotomy wounds was split thickness skin graft. This however led to an unsightly appearance as well as insensate area of skin over the graft [1–4]. Since no skin loss has occurred with the fasciotomy, and owing to the skin’s ability to relax when under stress (creep), several authors [4–14] considered the use of skin stretching techniques to gradually or acutely close fasciotomy wounds. This process has been called by some authors dermatotration [6, 7]. To achieve this, some used specialized and costly equipment [4–8]. Our hypothesis was that closure of fasciotomy wounds by dermatotraction could be performed in a staged fashion, using inexpensive equipment readily available in any standard operating room, until skin was approximated enough to heal either through delayed primary closure or secondary healing. 2. Patients and Methods
References
[1]
A. M. Fitzgerald, P. Gaston, Y. Wilson, A. Quaba, and M. M. McQueen, “Long-term sequelae of fasciotomy wounds,” British Journal of Plastic Surgery, vol. 53, no. 8, pp. 690–693, 2000.
[2]
G. C. Velmahos, D. Theodorou, D. Demetriades et al., “Complications and nonclosure rates of fasciotomy for trauma and related risk factors,” World Journal of Surgery, vol. 21, no. 3, pp. 247–253, 1997.
[3]
A. B. Williams, F. A. Luchette, H. T. Papaconstantinou et al., “The effect of early versus late fasciotomy in the management of extremity trauma,” Surgery, vol. 122, no. 4, pp. 861–866, 1997.
[4]
Y. Barnea, E. Gur, A. Amir et al., “Delayed primary closure of fasciotomy wounds with Wisebands, a skin- and soft tissue-stretch device,” Injury, vol. 37, no. 6, pp. 561–566, 2006.
[5]
B. Hirshowitz, E. Lindenbaum, and Y. Har-Shai, “A skin-stretching device for the harnessing of the viscoelastic properties of skin,” Plastic and Reconstructive Surgery, vol. 92, no. 2, pp. 260–270, 1993.
[6]
H. M. J. Janzing and P. L. O. Broos, “Dermatotraction: an effective technique for the closure of fasciotomy wounds: a preliminary report of fifteen patients,” Journal of Orthopaedic Trauma, vol. 15, no. 6, pp. 438–441, 2001.
[7]
D. J. Marek, G. E. Copeland, M. Zlowodzki, and P. A. Cole, “The application of dermatotraction for primary skin closure,” American Journal of Surgery, vol. 190, no. 1, pp. 123–126, 2005.
[8]
R. C. Taylor, B. J. Reitsma, S. Sarazin, and M. G. Bell, “Early results using a dynamic method for delayed primary closure of fasciotomy wounds,” Journal of the American College of Surgeons, vol. 197, no. 5, pp. 872–878, 2003.
[9]
G. A. M. Govaert and S. Van Helden, “Ty-raps in trauma: a novel closing technique of extremity fasciotomy wounds,” Journal of Trauma, vol. 69, no. 4, pp. 972–975, 2010.
[10]
N. Chiverton and J. F. Redden, “A new technique for delayed primary closure of fasciotomy wounds,” Injury, vol. 31, no. 1, pp. 21–24, 2000.
[11]
L. Galois, J. Pauchot, F. Pfeffer et al., “Modified shoelace technique for delayed primary closure of the thigh after acute compartment syndrome,” Acta Orthopaedica Belgica, vol. 68, no. 1, pp. 63–67, 2002.
[12]
J. Harrah, R. Gates, J. Carl, and J. D. Harrah, “A simpler, less expensive technique for delayed primary closure of fasciotomies,” American Journal of Surgery, vol. 180, no. 1, pp. 55–57, 2000.
[13]
S. Ridgeway, M. Sood, M. Enchil-Yawson, and M. Rowntree, “An alternative technique for the delayed primary closure of traumatic wounds,” Injury, vol. 33, no. 7, pp. 647–649, 2002.
[14]
P. Zorrilla, A. Marín, L. A. Gómez, and J. A. Salido, “Shoelace technique for gradual closure of fasciotomy wounds,” The Journal of Trauma, vol. 59, no. 6, pp. 1515–1517, 2005.