全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Arthroplasty Utilization in the United States is Predicted by Age-Specific Population Groups

DOI: 10.5402/2012/185938

Full-Text   Cite this paper   Add to My Lib

Abstract:

Osteoarthritis is a common indication for hip and knee arthroplasty. An accurate assessment of current trends in healthcare utilization as they relate to arthroplasty may predict the needs of a growing elderly population in the United States. First, incidence data was queried from the United States Nationwide Inpatient Sample from 1993 to 2009. Patients undergoing total knee and hip arthroplasty were identified. Then, the United States Census Bureau was queried for population data from the same study period as well as to provide future projections. Arthroplasty followed linear regression models with the population group >64 years in both hip and knee groups. Projections for procedure incidence in the year 2050 based on these models were calculated to be 1,859,553 cases (hip) and 4,174,554 cases (knee). The need for hip and knee arthroplasty is expected to grow significantly in the upcoming years, given population growth predictions. 1. Introduction As the post-World War II “baby boom” generation ages, a growing percentage of Americans will be living into their eighth decade and beyond [1]. Such demographic shift has significant implications for the design of a new healthcare delivery model [2, 3]. Medical conditions prevalent in the elderly are of particular interest and will have the greatest impact on the system. These include degenerative conditions, with severe arthritis afflicting over 15% of the population and estimated to surpass 20% (or 60 million people) by 2020 [4, 5]. As osteoarthritides of the knee and hip are known to increase with age, it is not surprising that the majority of knee and hip arthroplasty is performed in the elderly [6–12]. Being in a current state of healthcare reform with specific funding allocations being made, the understanding of future trends becomes critical. Considering that musculoskeletal complaints are the leading cause of medical claims, (with osteoarthritis encompassing the majority of disability in elderly adults), it is necessary to identify recent trends in arthroplasty and project future utilization needs. We hypothesize that the elderly subpopulation is correlated with arthroplasty utilization and can be used to predict arthroplasty utilization in the future. 2. Methods/Materials The data was analyzed anonymously, using publicly available secondary data; therefore no ethics statement is required for this work. To protect the confidentiality of patients, the dataset suppressed reporting when values were based on 10 or fewer discharges or when fewer than two hospitals in the state were reporting. Incidence

References

[1]  R. A. Easterlin, The American Baby Boom In Historical Perspective, UMI, 1968.
[2]  S. Keehan, A. Sisko, C. Truffer et al., “Trends: health spending projections through 2017: the baby-boom generation is coming to medicare,” Health Affairs, vol. 27, no. 2, pp. w145–w155, 2008.
[3]  U. E. Reinhardt, “Health care for the aging baby boom: lessons from abroad,” Journal of Economic Perspectives, vol. 14, no. 2, pp. 71–83, 2000.
[4]  B. Walcott, B. Hanak, J. Caracci et al., “Trends in inpatient setting laminectomy for excision of herniated intervertebral disc: population-based estimates from the US nationwide inpatient sample,” Surgical Neurology International, vol. 2, no. 1, article 7, 2011.
[5]  J. M. Guralnik, A. Z. LaCroix, R. D. Abbott et al., “Maintaining mobility in late life. I. Demographic characteristics and chronic conditions,” American Journal of Epidemiology, vol. 137, no. 8, pp. 845–857, 1993.
[6]  D. T. Felson, A. Naimark, and J. Anderson, “The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study,” Arthritis and Rheumatism, vol. 30, no. 8, pp. 914–918, 1987.
[7]  S. A. Oliveria, D. T. Felson, J. I. Reed, P. A. Cirillo, and A. M. Walker, “Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization,” Arthritis and Rheumatism, vol. 38, no. 8, pp. 1134–1141, 1995.
[8]  N. B. Jain, L. D. Higgins, D. Ozumba et al., “Trends in epidemiology of knee arthroplasty in the United States, 1990–2000,” Arthritis and Rheumatism, vol. 52, no. 12, pp. 3928–3933, 2005.
[9]  M. Khatod, M. Inacio, E. W. Paxton et al., “Knee replacement: epidemiology, outcomes, and trends in Southern California: 17,080 Replacements from 1995 through 2004,” Acta Orthopaedica, vol. 79, no. 6, pp. 812–819, 2008.
[10]  K. J. Bozic, S. M. Kurtz, E. Lau et al., “The epidemiology of revision total knee arthroplasty in the united states,” Clinical Orthopaedics and Related Research, vol. 468, no. 1, pp. 45–51, 2010.
[11]  K. J. Bozic, S. M. Kurtz, E. Lau, K. Ong, D. T. P. Vail, and D. J. Berry, “The epidemiology of revision total hip arthroplasty in the united states,” Journal of Bone and Joint Surgery A, vol. 91, no. 1, pp. 128–133, 2009.
[12]  K. J. Bozic, P. Katz, M. Cisternas, L. Ono, M. D. Ries, and J. Showstack, “Hospital resource utilization for primary and revision total hip arthroplasty,” Journal of Bone and Joint Surgery A, vol. 87, no. 3, pp. 570–576, 2005.
[13]  A. Elixhauser, “Most frequent diagnoses and procedures for DRGs, by insurance status. Rockville, Md,” Healthcare Cost and Utilization Project (U.S.), U.S. Dept. Health and Human Services, Public Health Service, AHCPR Publications Clearinghouse, Silver Spring, Md, USA, 1996.
[14]  USDo Commerce, Population Estimates. Current Estimates Data, 2012.
[15]  USDo Commerce, U.S. Population Projections Main, 2012.
[16]  V. Lundblad and J. W. Szostak, “A mutant with a defect in telomere elongation leads to senescence in yeast,” Cell, vol. 57, no. 4, pp. 633–643, 1989.
[17]  J. Campisi, S. H. Kim, C. S. Lim, and M. Rubio, “Cellular senescence, cancer and aging: the telomere connection,” Experimental Gerontology, vol. 36, no. 10, pp. 1619–1637, 2001.
[18]  J. Campisi, “Cancer and ageing: rival demons?” Nature Reviews Cancer, vol. 3, no. 5, pp. 339–349, 2003.
[19]  M. E. T. Dollé, W. K. Snyder, J. A. Gossen, P. H. M. Lohman, and J. Vijg, “Distinct spectra of somatic mutations accumulated with age in mouse heart and small intestine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 15, pp. 8403–8408, 2000.
[20]  R. Ross and J. A. Glomset, “The pathogenesis of atherosclerosis,” New England Journal of Medicine, vol. 295, no. 7, pp. 369–377, 1976.
[21]  R. A. Miller, “The aging immune system: primer and prospectus,” Science, vol. 273, no. 5271, pp. 70–74, 1996.
[22]  A. B. Mariotto, K. Robin Yabroff, Y. Shao, E. J. Feuer, and M. L. Brown, “Projections of the cost of cancer care in the United States: 2010–2020,” Journal of the National Cancer Institute, vol. 103, no. 2, pp. 117–128, 2011.
[23]  P. C. Wroe, J. A. Finkelstein, G. T. Ray, et al., “Aging population and future burden of pneumococcal pneumonia in the United States,” Journal of Infectious Diseases, vol. 205, pp. 1589–1592, 2012.
[24]  P. A. Heidenreich, J. G. Trogdon, O. A. Khavjou et al., “Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association,” Circulation, vol. 123, no. 8, pp. 933–944, 2011.
[25]  M. C. Odden, P. G. Coxson, A. Moran, J. M. Lightwood, L. Goldman, and K. Bibbins-Domingo, “The impact of the aging population on coronary heart disease in the United States,” American Journal of Medicine, vol. 124, no. 9, pp. 827–833, 2011.
[26]  S. Kurtz, K. Ong, E. Lau, F. Mowat, and M. Halpern, “Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030,” Journal of Bone and Joint Surgery A, vol. 89, no. 4, pp. 780–785, 2007.
[27]  P. Cram, X. Lu, S. L. Kates, J. A. Singh, Y. Li, and B. R. Wolf, “Total knee arthroplasty volume, utilization, and outcomes among medicare beneficiaries, 1991–2010,” Journal of the American Medical Association, vol. 308, no. 12, pp. 1227–1236, 2012.
[28]  S. Tepper and M. C. Hochberg, “Factors associated with hip osteoarthritis: data from the First National Health and Nutrition Examination Survey (NHANES-I),” American Journal of Epidemiology, vol. 137, no. 10, pp. 1081–1088, 1993.
[29]  C. Cooper, H. Inskip, P. Croft et al., “Individual risk factors for hip osteoarthritis: obesity, hip injury, and physical activity,” American Journal of Epidemiology, vol. 147, no. 6, pp. 516–522, 1998.
[30]  K. M. Flegal, M. D. Carroll, R. J. Kuczmarski, and C. L. Johnson, “Overweight and obesity in the United States: prevalence and trends, 1960–1994,” International Journal of Obesity, vol. 22, no. 1, pp. 39–47, 1998.
[31]  A. H. Mokdad, M. K. Serdula, W. H. Dietz, B. A. Bowman, J. S. Marks, and J. P. Koplan, “The spread of the obesity epidemic in the United States, 1991–1998,” Journal of the American Medical Association, vol. 282, no. 16, pp. 1519–1522, 1999.
[32]  C. L. Ogden, M. D. Carroll, L. R. Curtin, M. A. McDowell, C. J. Tabak, and K. M. Flegal, “Prevalence of overweight and obesity in the United States, 1999–2004,” Journal of the American Medical Association, vol. 295, no. 13, pp. 1549–1555, 2006.
[33]  T. D. Spector, F. Cicuttini, J. Baker, J. Loughlin, and D. Hart, “Genetic influences on osteoarthritis in women: a twin study,” British Medical Journal, vol. 312, no. 7036, pp. 940–944, 1996.
[34]  N. J. Manek, D. Hart, T. D. Spector, and A. J. MacGregor, “The association of body mass index and osteoarthritis of the knee joint: an examination of genetic and environmental influences,” Arthritis and Rheumatism, vol. 48, no. 4, pp. 1024–1029, 2003.
[35]  A. J. MacGregor, L. Antoniades, M. Matson, T. Andrew, and T. D. Spector, “The genetic contribution to radiographic hip osteoarthritis in women: results of a classic twin study,” Arthritis and Rheumatism, vol. 43, no. 11, pp. 2410–2416, 2000.
[36]  W. L. Healy, R. Iorio, J. Ko, D. Appleby, and D. W. Lemos, “Impact of cost reduction programs on short-term patient outcome and hospital cost of total knee arthroplasty,” Journal of Bone and Joint Surgery A, vol. 84, no. 3, pp. 348–353, 2002.
[37]  D. Iliopoulos, K. N. Malizos, and A. Tsezou, “Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention,” Annals of the Rheumatic Diseases, vol. 66, no. 12, pp. 1616–1621, 2007.
[38]  N. Yamada, K. Cheung, S. Tilley, et al., “Does epigenetics play a role in the pathology of osteoarthritis?” Journal of Bone & Joint Surgery, vol. 88, pp. 403–403, 2006.
[39]  D. T. Felson, Y. Zhang, J. M. Anthony, A. Naimark, and J. J. Anderson, “Weight loss reduces the risk for symptomatic knee osteoarthritis in women: the Framingham study,” Annals of Internal Medicine, vol. 116, no. 7, pp. 535–539, 1992.
[40]  W. H. Ettinger, R. Burns, S. P. Messier et al., “A randomized trial comparing aerobic exercise and resistance exercise with a health education program in older adults with knee osteoarthritis: the Fitness Arthritis and Seniors Trial (FAST),” Journal of the American Medical Association, vol. 277, no. 1, pp. 25–31, 1997.
[41]  K. J. Bozic, P. Katz, M. Cisternas, L. Ono, M. D. Ries, and J. Showstack, “Hospital resource utilization for primary and revision total hip arthroplasty,” Journal of Bone and Joint Surgery A, vol. 87, no. 3, pp. 570–576, 2005.
[42]  J. Skinner, J. N. Weinstein, S. M. Sporer, and J. E. Wennberg, “Racial, ethnic, and geographic disparities in rates of knee arthroplasty among Medicare patients,” New England Journal of Medicine, vol. 349, no. 14, pp. 1350–1359, 2003.
[43]  M. G. E. Peterson, J. P. Hollenberg, T. P. Szatrowski, N. A. Johanson, C. A. Mancuso, and M. E. Charlson, “Geographic variations in the rates of elective total hip and knee arthroplasties among Medicare beneficiaries in the United States,” Journal of Bone and Joint Surgery A, vol. 74, no. 10, pp. 1530–1539, 1992.
[44]  B. Bashinskaya, B. V. Nahed, N. Redjal, K. T. Kahle, and B. P. Walcott, “Trends in peptic ulcer disease and the identification of Helicobacter Pylori as a causative organism: population-based estimates from the US nationwide inpatient sample,” Journal of Global Infectious Diseases, vol. 3, no. 4, pp. 366–370, 2011.
[45]  B. P. Walcott, E. V. Kuklina, B. V. Nahed et al., “Craniectomy for malignant cerebral infarction: prevalence and outcomes in US hospitals,” PLoS ONE, vol. 6, no. 12, Article ID e29193, 2011.
[46]  C. Lavernia, D. J. Lee, and V. H. Hernandez, “The increasing financial burden of knee revision surgery in the United States,” Clinical Orthopaedics and Related Research, no. 446, pp. 221–226, 2006.
[47]  E. Losina, R. P. Walensky, C. L. Kessler et al., “Cost-effectiveness of total knee arthroplasty in the United States: patient risk and hospital volume,” Archives of Internal Medicine, vol. 169, no. 12, pp. 1113–1121, 2009.
[48]  J. H. Coben, C. A. Steiner, M. Barrett, C. T. Merrill, and D. Adamson, “Completeness of cause of injury coding in healthcare administrative databases in the United States, 2001,” Injury Prevention, vol. 12, no. 3, pp. 199–201, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133