Suspensions of graphene, prepared from graphite foil by sonochemical exfoliation, have been treated with new nonpolar pyrenebutyric amides. The assemblies, in suspension and after deposition on solid supports, were characterized by NMR, absorption, and fluorescence spectroscopy and by transmission electron microscopy, where the well-defined shape and size of an appended [60]fulleropyrrolidine unit facilitates TEM detection of the nonstationary molecules. The accumulated evidence, also including direct comparisons of carbon nanotubes treated with pyrene amides under the same conditions, proves the successful noncovalent functionalization of graphene suspended in non-polar solvent with non-polar pyrene derivatives. 1. Introduction Graphene, the two-dimensional parent structural unit of three-dimensional graphite and one-dimensional carbon nanotubes [1, 2], has been treated theoretically since decades, with suggestions of numerous applications that would benefit from the predicted unusual electron transport properties of a defect-free extended delocalized aromatic carbon system [3]. When the material was shown to exist, a new expansive area opened, involving also experimentalists since reproducible production of high-quality graphene and controlled modification thereof are keys to any of the suggested applications [4]. The strategies include molecular synthesis [5] but the main ones are still micromechanical exfoliation from HOPG, [1–3] epitaxial growth on SiC surfaces [6], chemical vapour deposition on metals [7, 8], and chemical exfoliation, either via graphitic and graphene oxides [9, 10] or in direct sonochemical processes not involving any oxidative, acidic or reductive reagents [11, 12]. The latter gives, in a controllable and scalable fashion, dispersions/suspensions of graphene flakes well suited for further chemical manipulation, where protocols developed for carbon nanotube functionalizations have been obvious starting points [13–15]. Since covalent functionalization of the largely planar unsaturated carbon system introduces sp3 sites and by this permanent change of the electronic properties, such routes would be interesting mainly for permanent doping purposes [16, 17]. In contrast, non covalent routes would inflict only minor and temporary changes to the graphene -system and, as has been demonstrated for carbon nanotubes [18, 19], render possible the introduction of almost any functional unit in a potentially reversible fashion. Such strategies have been reported for graphene oxide [20, 21], for solid films of reduced graphene oxide [22] as
References
[1]
M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb carbon: a review of graphene,” Chemical Reviews, vol. 110, no. 1, pp. 132–145, 2010.
[2]
C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, “Graphene: the new two-dimensional nanomaterial,” Angewandte Chemie—International Edition, vol. 48, no. 42, pp. 7752–7777, 2009.
[3]
A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, 2007.
[4]
H. Grennberg and U. Jansson, “Synthesis of graphene and derivatives,” in Advanced Functional Materials, a Perspective from Theory and Experimen, B. Sanyal and O. Eriksson, Eds., Elsevier, New York, NY, USA, 2012.
[5]
J. Wu, W. Pisula, and K. Müllen, “Graphenes as potential material for electronics,” Chemical Reviews, vol. 107, no. 3, pp. 718–747, 2007.
[6]
K. V. Emtsev, A. Bostwick, K. Horn et al., “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nature Materials, vol. 8, no. 3, pp. 203–207, 2009.
[7]
T. A. Land, T. Michely, R. J. Behm, J. C. Hemminger, and G. Comsa, “STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition,” Surface Science, vol. 264, no. 3, pp. 261–270, 1992.
[8]
A. Nagashima, “Electronic states of monolayer graphite formed on TiC(111) surface,” Surface Science, vol. 291, no. 1-2, pp. 93–98, 1993.
[9]
X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science, vol. 319, no. 5867, pp. 1229–1232, 2008.
[10]
S. Stankovich, D. A. Dikin, R. D. Piner et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, pp. 1558–1565, 2007.
[11]
E. Widenkvist, D. W. Boukhvalov, S. Rubino et al., “Mild sonochemical exfoliation of bromine-intercalated graphite: a new route towards graphene,” Journal of Physics D, vol. 42, no. 11, Article ID 112003, 2009.
[12]
Y. Hernandez, V. Nicolosi, M. Lotya et al., “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotechnology, vol. 3, no. 9, pp. 563–568, 2008.
[13]
D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, “Chemistry of carbon nanotubes,” Chemical Reviews, vol. 106, no. 3, pp. 1105–1136, 2006.
[14]
V. Georgakilas, M. Otyepka, A. B. Bourlinos et al., “Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications,” Chemical Reviews, vol. 112, pp. 6156–6214, 2012.
[15]
S. Gou and S. Dong, “Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications,” Chemical Society Reviews, vol. 40, pp. 2644–2672, 2011.
[16]
V. A. Colman, R. Knut, O. Karis et al., “Defect formation in graphene nanosheets by acid treatment: an x-ray absorption spectroscopy and density functional theory study,” Journal of Physics D, vol. 41, Article ID 062001, 2008.
[17]
B. Sanyal, O. Eriksson, U. Jansson, and H. Grennberg, “Molecular adsorption in graphene with divacancy defects,” Physical Review B, vol. 79, no. 11, Article ID 113409, 4 pages, 2009.
[18]
R. J. Chen, Y. Zhang, D. Wang, and H. Dai, “Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization,” Journal of the American Chemical Society, vol. 123, no. 16, pp. 3838–3839, 2001.
[19]
E. M. Pérze, A. L. Capodilupo, G. Fernández et al., “Weighting non-covalent forces in the molecular recognition of C60. Relevance of concave-convex complementarity,” Chemical Communications, no. 38, pp. 4567–4569, 2008.
[20]
K. S. Subrahmanyam, A. Ghosh, A. Gomathi, A. Govindaraj, and C. N. R. Rao, “Covalent and noncovalent functionalization and solubilization of graphene,” Nanoscience and Nanotechnology Letters, vol. 1, no. 1, pp. 28–31, 2009.
[21]
A. Ghosh, K. V. Rao, S. J. George, and C. N. R. Rao, “Noncovalent functionalization, exfoliation, and solubilization of graphene in water by employing a fluorescent coronene carboxylate,” Chemistry—A European Journal, vol. 16, pp. 2700–2704, 2010.
[22]
Y. Xu, H. Bai, G. Lu, C. Li, and G. Shi, “Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets,” Journal of the American Chemical Society, vol. 130, no. 18, pp. 5856–5857, 2008.
[23]
X. Wang, S. M. Tabakman, and H. Dai, “Atomic layer deposition of metal oxides on pristine and functionalized graphene,” Journal of the American Chemical Society, vol. 130, no. 26, pp. 8152–8153, 2008.
[24]
J. Lin, D. Teweldebrhan, K. Ashraf et al., “Gating of single-layer graphene with single-stranded deoxyribonucleic acids,” Small, vol. 6, no. 10, pp. 1150–1155, 2010.
[25]
A. J. Pollard, E. W. Perkins, N. A. Smith et al., “Supramolecular assemblies formed on an epitaxial graphene superstructure,” Angewandte Chemie—International Edition, vol. 49, no. 10, pp. 1794–1799, 2010.
[26]
Y.-H. Zhang, K.-G. Zhou, K.-F. Xie, J. Zheng, H.-L. Zhang, and Y. Peng, “Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms,” Nanotechnology, vol. 21, no. 6, Article ID 065201, 2010.
[27]
A. A. Green and M. C. Hersam, “Solution phase production of graphene with controlled thickness via density differentiation,” Nano Letters, vol. 9, pp. 4031–4036, 2009.
[28]
R. Heindla and W. H. Rippard, “Emerging devices based on spin transfer torque effect,” ECS Transactions, vol. 19, pp. 21–32, 2009.
[29]
M. Zhang, R. R. Parajuli, D. Mastrogiovanni et al., “Production of graphene sheets by direct dispersion with aromatic healing agents,” Small, vol. 6, no. 10, pp. 1100–1107, 2010.
[30]
G. Borsato, F. D. Negra, F. Gasparrini et al., “Internal motions in a fulleropyrrolidine tertiary amide with axial chirality,” Journal of Organic Chemistry, vol. 69, no. 17, pp. 5785–5788, 2004.
[31]
B. W. Smith, M. Monthioux, and D. E. Luzzi, “Encapsulated C60 in carbon nanotubes,” Nature, vol. 396, no. 6709, pp. 323–324, 1998.
[32]
Z. Liu, M. Koshino, K. Suenaga, A. Mrzel, H. Kataura, and S. Iijima, “Transmission electron microscopy imaging of individual functional groups of fullerene derivatives,” Physical Review Letters, vol. 96, no. 8, Article ID 088304, 4 pages, 2006.
[33]
S. M. Kozlov, F. Vi?es, and A. G. G?rling, “On the interaction of polycyclic aromatic compounds with graphene,” Carbon, vol. 50, no. 7, pp. 2482–2492, 2012.
[34]
K. Chajara, C.-H. Andersson, E. Widenkvist, and H. Grennberg, “The reagent-free, microwave-assisted purification of carbon nanotubes,” New Journal of Chemistry, vol. 34, pp. 2275–2280, 2010.
[35]
W. Yang, E. Widenkvist, U. Jansson, and H. Grennberg, “Stirring-induced aggregation of graphene in suspension,” New Journal of Chemistry, vol. 35, no. 4, pp. 780–783, 2011.