全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Antimicrobial and Dyeing Properties of Reactive Dyes with Thiazolidinon-4-one Nucleus

DOI: 10.1155/2014/894250

Full-Text   Cite this paper   Add to My Lib

Abstract:

Four imines, the condensation products of 2,4-dioxo-4-phenylbutanal with four primary amines, were condensed with mercapto acetic acid to obtain thiazolidinon-4-ones which on subsequent condensation with vanillin and isatin separately yielded eight thiazolidin-4-one derivatives. The chemical structures of the synthesized compounds were elucidated by elemental analysis, molecular weight determination, IR and 1H and 13C NMR spectral measurements. Antibacterial and antifungal properties were studied in vitro against two bacteria and two fungi. The dyeing potential of synthesized reactive dyes was investigated with regard to silk, wool, cotton, and polyester fabrics under hot and cold dyeing conditions. 1. Introduction A small heterocyclic ring containing nitrogen and sulphur has been under investigation for pretty long time owing to their potential biological features. Among these heterocyclics, thiazolidinones having thiazol nucleus have been reported to display wide spectrum ofimportant biological activities leading to their medicinal usage such as anticancer [1], antitubercular [2], anti-HIV [3], analgesic [4], anti-inflammatory [4], ulcerogenic [5], sedative [6], antiviral [7], CNS depressant [7], hypnotic [8], antithyroidal [9], antibacterial [10, 11], and antifungal [12, 13]. Besides the pivotal role of thiazolidinones in the field of medicinal science, their many derivatives, exhibiting herbicidal [14], pesticidal [15], and insecticidal [15] properties, have significant role in agriculture. The dyeing [16–18] and ligation [19] properties of thiazolidinones have also been reported. Reactive dyes believed to form homopolar bonds with textile substrates [16, 17] with special finishing capabilities are currently an area of active research. The synthesized thiazolidinone derivatives exhibiting antimicrobial properties and possessing several auxochromic and chromophoric groups reactive with synthetic (cellulose) and natural (protein) fabrics tempted us to evaluate their dyeing potentials with silk, wool, cotton, and polyester fabrics with simultaneous antimicrobial finishing of the textiles. 2. Results and Discussion The synthesis of compounds 9a–h is based on the synthetic routes shown in Scheme 1. Commercially available Benzoyl acetone (1) was oxidized into its glyoxal, 2,4-dioxo-4-phenylbutanal (2), by using selenium dioxide in ethanol. Then, the reaction of glyoxal (2) with substituted anilines such as p-NO2, p-OH, p-OCH3, and p-N(CH3)2 in dry ethanol yielded 3-oxo-3-phenylpropanal azomethines (4) which on cyclocondensation with thioglycolic acid in

References

[1]  A. V. Dobaria, J. R. Patel, J. V. Padaliya, and H. H. Parekh, “Thiazolidinones bearing chloroquinoline nucleus as potential antimicrobial agents,” Indian Journal of Heterocyclic Chemistry, vol. 11, no. 2, pp. 115–118, 2001.
[2]  S. G. Kucukguzel, E. E. Oruc, S. Rollas, F. Sahin, and A. Ozbek, “Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds,” European Journal of Medicinal Chemistry, vol. 37, no. 3, pp. 197–206, 2002.
[3]  R. K. Rawal, Y. S. Prabhakar, S. B. Katti, and E. de Clercq, “2-(aryl)-3-furan-2-ylmethyl-thiazolidin-4-ones as selective HIV-RT Inhibitors,” Bioorganic and Medicinal Chemistry, vol. 13, no. 24, pp. 6771–6776, 2005.
[4]  M. G. Vigorita, R. Ottanà, F. Monforte et al., “Synthesis and antiinflammatory, analgesic activity of 3,3′-(1,2-ethanediyl)-bis[2-aryl-4-thiazolidinone] chiral compounds—part 10,” Bioorganic & Medicinal Chemistry Letters, vol. 11, no. 21, pp. 2791–2794, 2001.
[5]  B. Goel, T. Ram, R. Tyagi et al., “2-substituted-3-(4-bromo-2-carboxyphenyl)-5-methyl-4-thiazolidinones as potential anti-inflammatory agents,” European Journal of Medicinal Chemistry, vol. 34, no. 3, pp. 265–269, 1999.
[6]  A. Solankee, K. Kapadia, I. Thakor, J. Patel, and S. Lad, “Synthesis and biological evaluation of some new chalcones and their derivatives,” Asian Journal of Chemistry, vol. 16, no. 2, pp. 921–927, 2004.
[7]  P. Mishra, K. P. Namdeo, S. Jain, and S. Jain, “Synthesis and antimicrobial activity of 4-thiazolidinones,” Asian Journal of Chemistry, vol. 11, no. 1, pp. 55–58, 1999.
[8]  D. S. Nair and A. C. Shah, “Synthesis of 5-thiazolidinone derivatives of (R) & (S)-2-aminobutanols,” Indian Journal of Heterocyclic Chemistry, vol. 16, no. 3, pp. 231–234, 2007.
[9]  C. D. Diulatbad and G. G. Bhat, “Synthesis and antimicrobial studies of 4-thiazolidinone derivatives from 2-bromohexanoic acid—part-II,” Indian Journal of Heterocyclic Chemistry, vol. 9, pp. 157–158, 1999.
[10]  D. Gebretekle, A. Tadesse, R. K. Upadhyay, and A. Dekebo, “Synthesis, characterization and antimicrobial evaluation of some schiff bases and their thiazolidinone products,” Oriental Journal of Chemistry, vol. 28, no. 4, pp. 1791–1796, 2012.
[11]  V. P. M. Rehman, S. H. Mukhtar, W. Ansari, and G. Lemiere, “Synthesis, stereochemistry and biological activity of some novel long alkyl chain substituted thiazolidin-4-ones and thiazan-4-one from 10-undecenoic acid hydrazide,” European Journal of Medicinal Chemistry, vol. 40, no. 2, pp. 173–184, 2005.
[12]  G. S. Singh and B. Molotsi, “Synthesis of 2-azetidinones from 2-diazo-1, 2-diarylethanones and N-(2-thienylidene)imines as possible antimicrobial agents,” Il Farmaco, vol. 60, no. 9, pp. 727–730, 2005.
[13]  V. Vats, R. K. Upadhyay, and P. Sharma, “Synthesis and antifungal activities of 2-ketophenyl-3-substituted aryl-1-thiazolidin-4-ones,” International Journal of Theoretical & Applied Sciences, vol. 1, pp. 24–26, 2009.
[14]  D. S. Tripathi, A. R. Mishra, R. M. Mishra, D. Singh, and A. K. Dwivedi, “Synthesis and fungitoxicity of some new thiadiazolo-s-triazine derivatives,” Indian Journal of Heterocyclic Chemistry, vol. 16, no. 2, pp. 117–120, 2006.
[15]  R. Sinha, S. P. Garg, and P. Sah, “Synthesis and biological activities of some 5-(2-arylamino-1,3,4-thiadiazolo)-thioazo substituted sulphonamides and related compounds,” Oriental Journal of Chemistry, vol. 20, no. 1, pp. 131–134, 2004.
[16]  R. K. Upadhyay, S. Attri, S. Upadhyay, and H. K. Tiwari, “Synthesis and dyeing action of novel thioindigoid reactive dyes,” Asian Journal of Chemistry, vol. 23, no. 7, pp. 3127–3129, 2011.
[17]  M. Mamo, A. T. Mengesha, R. K. Upadhyay, and A. Dekebo, “Studies on antimicrobial and dyeing potentials of some new oxazolidinone derivatives,” Journal of Pharmacy Research, vol. 5, p. 5543, 2012.
[18]  R. K. Upadhyay, N. Agarwal, and G. Mishra, “Synthesis of aryl-2-(alpha-hydroxy)phenylketo-4-thiazolidinones as dyes,” Journal of the Indian Chemical Society, vol. 72, no. 12, pp. 849–852, 1995.
[19]  A. A. El-Bindary, A. Z. El-Sonbati, A. El-Dissouky, and A. S. Hilali, “Stereochemistry, structural and models of novel 5-(4′-derivatives phenyldiazo)-3-phenyl-2-thioxo-4-thiazolidinone complexes,” Spectrochimica Acta A, vol. 58, no. 7, pp. 1365–1374, 2002.
[20]  S. Upadhyay, [Ph.D. thesis], C.C.S. University, Meerut, India, 2005.
[21]  M. Tutak and A. O. ?zdemir, “Reactive dyeing of cationized cotton: effects on the dyeing yield and the fastness properties,” Journal of Applied Polymer Science, vol. 119, no. 1, pp. 500–504, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133