The use of electrogenerated acetonitrile anion allows the alkylation of N-Boc-4-aminopyridine in very high yields, under mild conditions and without by-products. The high reactivity of this base is due to its large tetraethylammonium counterion, which leaves the acetonitrile anion “naked.” The deprotection of the obtained compounds led to high yields in N-alkylated 4-aminopyridines. Nonsymmetrically dialkylated 4-aminopyridines were obtained by subsequent reaction of monoalkylated ones with t-BuOK and alkyl halides, while symmetrically dialkylated 4-aminopyridines were obtained by direct reaction of 4-aminopyridine with an excess of t-BuOK and alkyl halides. Some mono- and dialkyl-4-aminopyridines were selected to evaluate antifungal and antiprotozoal activity; the dialkylated 4-aminopyridines 3ac, 3ae and 3ff showed antifungal towards Cryptococcus neoformans; whereas 3cc, 3ee and 3ff showed antiprotozoal activity towards Leishmania infantum and Plasmodium falciparum. 1. Introduction N-Alkylated 4-aminopyridine is a common moiety in biologically active molecules. It is present, in fact, in compounds with different activities such as inhibitors of p38 MAP kinase [1], inhibitors of HIV-EP1 cellular transcription factor [2], inhibitors of coagulation Factor Xa [3], and -chemokine receptor CCR5 antagonists in anti-HIV therapy [4]; in particular we have focused our work on the development of new CYP51 inhibitors, active both on fungal strains [5] and Trypanosoma Cruzi [6]. Many literature data evidenced that the pyridine group can efficaciously replace the heme-iron chelating azole moiety present in classical azole CYP51 inhibitors and, therefore, the alkylation of 4-aminopyridine (4AP) represents an important goal in organic synthesis to develop novel classes of antifungal and antiparasitic drugs [7, 8]. Due to the wide presence of these products, the alkylation of 4-aminopyridine (4AP) is therefore an important goal in organic synthesis. Different approaches to obtain N-alkylated 4-aminopyridines have been reported in the literature. Some examples are the efficient condensation of 4AP with alcohols catalyzed by benzaldehyde [9] or copper [10, 11] or magnetite [12], the reaction of 4AP with an acyl chloride, and the following reduction of the amide with LiAlH4 [13]. The most straightforward method, however, is the direct alkylation of 4AP with alkyl halides, although it suffers from some drawbacks. The two different nitrogen atoms compete in the alkylation reaction and usually the more nucleophilic pyridine nitrogen atom reacts faster, leading to the
References
[1]
G. R. Luedtke, K. Schinzel, X. Tan et al., “Amide-based inhibitors of p38α MAP kinase. Part 1. Discovery of novel N-pyridyl amide lead molecules,” Bioorganic and Medicinal Chemistry Letters, vol. 20, no. 8, pp. 2556–2559, 2010.
[2]
M. Otsuka, M. Fujita, Y. Sugiura et al., “Synthetic inhibitors of regulatory proteins involved in the signaling pathway of the replication of human immunodeficiency virus 1,” Bioorganic and Medicinal Chemistry, vol. 5, no. 1, pp. 205–215, 1997.
[3]
H. Nishida, Y. Miyazaki, T. Mukaihira et al., “Synthesis and evaluation of 1-arylsulfonyl-3-piperazinone derivatives as a factor Xa inhibitor II. Substituent effect on biological activities,” Chemical and Pharmaceutical Bulletin, vol. 50, no. 9, pp. 1187–1194, 2002.
[4]
C. A. Willoughby, K. G. Rosauer, J. J. Hale et al., “1,3,4 Trisubstituted pyrrolidine CCR5 receptor antagonists bearing 4-aminoheterocycle substituted piperidine side chains,” Bioorganic and Medicinal Chemistry Letters, vol. 13, no. 3, pp. 427–431, 2003.
[5]
D. de Vita, L. Scipione, S. Tortorella et al., “Synthesis and antifungal activity of a new series of 2-(1H-imidazol-1-yl)- 1-phenylethanol derivatives,” European Journal of Medicinal Chemistry, vol. 49, pp. 334–342, 2012.
[6]
L. Friggeri, L. Scipione, R. Costi et al., “New promising compounds with in vitro nanomolar activity against Trypanosoma Cruzi,” Medicinal Chemistry Letters, vol. 4, pp. 538–541, 2013.
[7]
C. K. Chen, P. S. Doyle, L. V. Yermalitskaya et al., “Trypanosoma Cruzi CYP51 inhibitor derived from a Mycobacterium tuberculosis screen hit,” PLoS Neglected Tropical Diseases, vol. 3, no. 2, article e372, 2009.
[8]
T. Y. Hargrove, Z. Wawrzak, P. W. Alexander et al., “Complexes of Trypanosoma Cruzi Sterol 14α-Demethylase (CYP51) with two pyridine-based drug candidates for chagas disease: structural basis for pathogen selectivity,” Journal of Biological Chemistry, vol. 288, pp. 31602–31615, 2013.
[9]
Q. Xu, Q. Li, X. Zhu, and J. Chen, “Green and scalable aldehyde-catalyzed transition metal-freeDehydrative N-Alkylation of amides and amines with alcohols,” Advanced Synthesis and Catalysis, vol. 355, pp. 73–80, 2013.
[10]
Q. Li, S. Fan, Q. Sun, H. Tian, X. Yu, and Q. Xu, “Copper-catalyzed N-alkylation of amides and amines with alcohols employing the aerobic relay race methodology,” Organic and Biomolecular Chemistry, vol. 10, no. 15, pp. 2966–2972, 2012.
[11]
A. Martínez-Asencio, D. J. Ramón, and M. Yus, “N-Alkylation of poor nucleophilic amines and derivatives with alcohols by a hydrogen autotransfer process catalyzed by copper(II) acetate: scope and mechanistic considerations,” Tetrahedron, vol. 67, no. 17, pp. 3140–3149, 2011.
[12]
R. Martínez, D. J. Ramón, and M. Yus, “Selective N-monoalkylation of aromatic amines with benzylic alcohols by a hydrogen autotransfer process catalyzed by unmodified magnetite,” Organic and Biomolecular Chemistry, vol. 7, no. 10, pp. 2176–2181, 2009.
[13]
E. J. Delaney, L. E. Wood, and I. M. Klotz, “Poly(ethylenimines) with alternative (alkylamino)pyridines as nucleophilic catalysts,” Journal of the American Chemical Society, vol. 104, no. 3, pp. 799–807, 1982.
[14]
T. Zhao and G. Sun, “Synthesis and characterization of antimicrobial cationic surfactants: aminopyridinium salts,” Journal of Surfactants and Detergents, vol. 9, no. 4, pp. 325–330, 2006.
[15]
T. Ito, T. Ikemoto, Y. Isogami et al., “Practical synthesis of low-density lipoprotein receptor upregulator, N-[1-(3-phenylpropane-1-yl)piperidin-4-yl]-5-thia-1,8b-diazaacenaphthylene-4-carboxamide,” Organic Process Research and Development, vol. 6, no. 3, pp. 238–241, 2002.
[16]
O. M. Singh, S. J. Singh, N. K. Su, and S.-G. Lee, “Reaction of lithioamines with alkyl halides: a convenient direct synthesis of N-alkylaminopyridines,” Bulletin of the Korean Chemical Society, vol. 28, no. 1, pp. 115–117, 2007.
[17]
D. M. Krein and T. L. Lowary, “A convenient synthesis of 2-(alkylamino)pyridines,” Journal of Organic Chemistry, vol. 67, no. 14, pp. 4965–4967, 2002.
[18]
The direct cathodic reduction of N-Boc-4AP led to its deprotection and to the formation of 4AP.
[19]
L. Rossi, M. Feroci, and A. Inesi, “The electrogenerated cyanomethyl anion in organic synthesis,” Mini-Reviews in Organic Chemistry, vol. 2, no. 1, pp. 79–90, 2005.
[20]
M. Feroci, D. de Vita, L. Scipione, G. Sotgiu, and S. Tortorella, “Electrogenerated acetonitrile anion induced selective N-alkylation of bifunctional compounds,” Tetrahedron Letters, vol. 53, no. 20, pp. 2564–2567, 2012.
[21]
M. Feroci, I. Chiarotto, L. Rossi, and A. Inesi, “Activation of elemental sulfur by electrogenerated cyanomethyl anion: synthesis of substituted 2-aminothiophenes by the Gewald reaction,” Advanced Synthesis and Catalysis, vol. 350, no. 17, pp. 2740–2746, 2008.
[22]
M. Feroci, “Synthesis of β-lactams by 4-exo-tet cyclization process induced by electrogenerated cyanomethyl anion, part 2. Stereochemical implications,” Advanced Synthesis and Catalysis, vol. 349, no. 13, pp. 2177–2181, 2007.
[23]
M. Feroci, M. A. Casadei, M. Orsini, L. Palombi, and A. Inesi, “Cyanomethyl anion/carbon dioxide system: an electrogenerated carboxylating reagent. Synthesis of carbamates under mild and safe conditions,” Journal of Organic Chemistry, vol. 68, no. 4, pp. 1548–1551, 2003.
[24]
M. Feroci, M. Orsini, G. Sotgiu, L. Rossi, and A. Inesi, “Electrochemically promoted C-N bond formation from acetylenic amines and CO2. Synthesis of 5-methylene-1,3-oxazolidin-2-ones,” Journal of Organic Chemistry, vol. 70, no. 19, pp. 7795–7798, 2005.
[25]
Y. Basel and A. Hassner, “Di-tert-butyl dicarbonate and 4-(dimethylamino)pyridine revisited. Their reactions with amines and alcohols,” Journal of Organic Chemistry, vol. 65, no. 20, pp. 6368–6380, 2000.
[26]
CLSI, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, Approved Standard, 3rd edition. CLSI Document M27A3, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 2008.
[27]
CLSI, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, Approved Standard, 2nd edition. CLSI Document M38-A2, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 2008.
[28]
CLSI, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd inFormational Supplement. CLSI Document M27-S3, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 2008.
[29]
P. Cos, A. J. Vlietinck, D. V. Berghe, and L. Maes, “Anti-infective potential of natural products: how to develop a stronger in vitro 'proof-of-concept',” Journal of Ethnopharmacology, vol. 106, no. 3, pp. 290–302, 2006.