全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chitosan as a Renewable Heterogeneous Catalyst for the Knoevenagel Reaction in Ionic Liquid as Green Solvent

DOI: 10.5402/2012/928484

Full-Text   Cite this paper   Add to My Lib

Abstract:

The combination of chitosan as a renewable heterogeneous catalyst and ionic liquid as a “green” solvent was employed for the Knoevenagel reaction. The chitosan catalyst was characterized by various techniques, including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and elemental analysis. Excellent conversions were achieved under mild conditions without the need for an inert atmosphere. There was no contribution from leached active species, and conversion was only being possible in the presence of the solid catalyst. The chitosan catalyst as well as the ionic liquid solvent could be recovered in essentially pure form after being used in the reaction, and each of them could be reused several times without a significant degradation in efficiency. 1. Introduction Room temperature ionic liquids have been considered as potential green alternatives to conventional volatile organic solvents during the last decade [1–5]. They exhibit several advantages such as negligible vapor pressure, excellent ability to dissolve organic compounds, ease of separation from products, and potential for recycling [6–8]. A variety of ionic liquids have been investigated, generally consisting of salts of organic cations, for example, tetraalkylammonium, alkylpyridinium, 1,3-dialkylimidazolium, tetraalkylphosphonium [2, 9]. During the past few years, several organic transformations have been carried out using ionic liquids as environmentally benign solvents, such as hydrogenation [10], oxidation [11–14], Heck cross-coupling reaction [15, 16], Suzuki reaction [17], Sonogashira reaction [18], Diels-Alder reaction [19], aldol condensation [20], alkylation [21–23], Micheal addition [24], oxa-Michael addition [25], Schmidt reaction [26], ring-closing metathesis [27], esterification reaction [28, 29], and enzyme-catalyzed organic reactions [30–33]. However, since the application of the first ionic liquid sample as solvent for organic transformations, research works have been mostly focused on homogeneous catalysis in ionic liquids. Indeed, reports on organic reactions using heterogeneous catalysts in ionic liquids as solvents have been very limited in the literature [34–38]. The Knoevenagel condensation between aldehydes or ketones with activated methylene compounds is one of important carbon-carbon forming reactions in organic synthesis [39, 40]. Conventionally, this reaction is catalyzed by alkali metal hydroxides or by organic bases under

References

[1]  C. Chiappe, P. Piccioli, and D. Pieraccini, “Selective N-alkylation of anilines in ionic liquids,” Green Chemistry, vol. 8, no. 3, pp. 277–281, 2006.
[2]  R. A. Sheldon, “Green solvents for sustainable organic synthesis: state of the art,” Green Chemistry, vol. 7, no. 5, pp. 267–278, 2005.
[3]  V. I. Parvulescu and C. Hardacre, “Catalysis in ionic liquids,” Chemical Reviews, vol. 107, no. 6, pp. 2615–2665, 2007.
[4]  K. Binnemans, “Lanthanides and actinides in ionic liquids,” Chemical Reviews, vol. 107, no. 6, pp. 2592–2614, 2007.
[5]  N. Jain, A. Kumar, S. Chauhan, and S. M. S. Chauhan, “Chemical and biochemical transformations in ionic liquids,” Tetrahedron, vol. 61, no. 5, pp. 1015–1060, 2005.
[6]  S. Baj, A. Chrobok, and S. Derfla, “A new method for dialkyl peroxides synthesis in ionic liquids as solvents,” Green Chemistry, vol. 8, no. 3, pp. 292–295, 2006.
[7]  Y. Y. Wang, M. M. Luo, Q. Lin, H. Chen, and X. J. Li, “Efficient biphasic hydroaminomethylation of long chain olefins in ionic liquids,” Green Chemistry, vol. 8, no. 6, pp. 545–548, 2006.
[8]  R. Hart, P. Pollet, D. J. Hahne et al., “Benign coupling of reactions and separations with reversible ionic liquids,” Tetrahedron, vol. 66, no. 5, pp. 1082–1090, 2010.
[9]  B. C. Ranu and S. S. Dey, “Catalysis by ionic liquid: a simple, green and efficient procedure for the Michael addition of thiols and thiophosphate to conjugated alkenes in ionic liquid, [pmIm]Br,” Tetrahedron, vol. 60, no. 19, pp. 4183–4188, 2004.
[10]  X. Yuan, N. Yan, C. Xiao et al., “Highly selective hydrogenation of aromatic chloronitro compounds to aromatic chloroamines with ionic-liquid-like copolymer stabilized platinum nanocatalysts in ionic liquids,” Green Chemistry, vol. 12, no. 2, pp. 228–233, 2010.
[11]  A. Chrobok, “The Baeyer-Villiger oxidation of ketones with Oxone in the presence of ionic liquids as solvents,” Tetrahedron, vol. 66, no. 32, pp. 6212–6216, 2010.
[12]  X. Fan, Y. Wang, Y. He, X. Zhang, and J. Wang, “Ru(III)-catalyzed oxidative reaction in ionic liquid: an efficient and practical route to 2-substituted benzothiazoles and their hybrids with pyrimidine nucleoside,” Tetrahedron Letters, vol. 51, no. 27, pp. 3493–3496, 2010.
[13]  Y. L. Hu, Q. F. Liu, T. T. Lu, and M. Lu, “Highly efficient oxidation of organic halides to aldehydes and ketones with H5IO6 in ionic liquid [C12mim][FeCl4],” Catalysis Communications, vol. 11, no. 10, pp. 923–927, 2010.
[14]  S. Gago, S. S. Balula, S. Figueiredo et al., “Catalytic olefin epoxidation with cationic molybdenum(VI) cis-dioxo complexes and ionic liquids,” Applied Catalysis A, vol. 372, no. 1, pp. 67–72, 2010.
[15]  Z. D. Petrovi?, D. Simijonovi?, V. P. Petrovi?, and S. Markovi?, “Diethanolamine and N,N-diethylethanolamine ionic liquids as precatalyst-precursors and reaction media in green Heck reaction protocol,” Journal of Molecular Catalysis A, vol. 327, no. 1-2, pp. 45–50, 2010.
[16]  J. C. Cárdenas, L. Fadini, and C. A. Sierra, “Triphenylphosphite and ionic liquids: positive effects in the Heck cross-coupling reaction,” Tetrahedron Letters, vol. 51, no. 52, pp. 6867–6870, 2010.
[17]  M. V. Escárcega-Bobadilla, E. Teuma, A. M. Masdeu-Bultó, and M. Gómez, “New bicyclic phosphorous ligands: synthesis, structure and catalytic applications in ionic liquids,” Tetrahedron, vol. 67, no. 2, pp. 421–428, 2011.
[18]  V. Singh, R. Ratti, and S. Kaur, “Synthesis and characterization of recyclable and recoverable MMT-clay exchanged ammonium tagged carbapalladacycle catalyst for Mizoroki-Heck and Sonogashira reactions in ionic liquid media,” Journal of Molecular Catalysis A, vol. 334, no. 1-2, pp. 13–19, 2011.
[19]  O. Bortolini, A. De Nino, A. Garofalo, L. Maiuolo, A. Procopio, and B. Russo, “Erbium triflate in ionic liquids: a recyclable system of improving selectivity in Diels-Alder reactions,” Applied Catalysis A, vol. 372, no. 2, pp. 124–129, 2010.
[20]  S. S. Khan, J. Shah, and J. Liebscher, “Synthesis of new ionic-liquid-tagged organocatalysts and their application in stereoselective direct aldol reactions,” Tetrahedron, vol. 66, no. 27-28, pp. 5082–5088, 2010.
[21]  V. Conte, G. Fiorani, B. Floris, P. Galloni, and S. Woodward, “Palladium-catalysed methylation of aryl halides in ionic liquids with stabilized AlMe3,” Applied Catalysis A, vol. 381, no. 1-2, pp. 161–168, 2010.
[22]  D. J. Hong, D. W. Kim, and D. Y. Chi, “Facile ring-closure cyclization of arenes by nucleophilic C-alkylation reaction in ionic liquid,” Tetrahedron Letters, vol. 51, no. 1, pp. 54–56, 2010.
[23]  X. Nie, X. Liu, L. Gao, M. Liu, C. Song, and X. Guo, “SO3H-functionalized ionic liquid catalyzed alkylation of catechol with tert -Butyl alcohol,” Industrial and Engineering Chemistry Research, vol. 49, no. 17, pp. 8157–8163, 2010.
[24]  X. Liang and C. Qi, “Synthesis of a novel ionic liquid with both Lewis and Br?nsted acid sites and its catalytic activities,” Catalysis Communications, vol. 12, no. 9, pp. 808–812, 2011.
[25]  H. Guo, X. Li, J. L. Wang, X. H. Jin, and X. F. Lin, “Acidic ionic liquid [NMP]H2PO4 as dual solvent-catalyst for synthesis of β-alkoxyketones by the oxa-Michael addition reactions,” Tetrahedron, vol. 66, no. 42, pp. 8300–8303, 2010.
[26]  M. A. Epishina, A. S. Kulikov, N. V. Ignat'Ev, M. Schulte, and N. N. Makhova, “The first example of the Schmidt reaction in ionic liquids,” Mendeleev Communications, vol. 20, no. 6, pp. 335–336, 2010.
[27]  S. Muthusamy and D. Azhagan, “Efficient synthesis of 19–31 membered macrocyclic tetralactones via ring closing metathesis in ionic liquids,” Tetrahedron, vol. 66, no. 41, pp. 8196–8202, 2010.
[28]  X.-W. Peng, J.-L. Ren, and R.-C. Sun, “Homogeneous esterification of xylan-rich hemicelluloses with maleic anhydride in ionic liquid,” Biomacromolecules, vol. 11, no. 12, pp. 3519–3524, 2010.
[29]  H. Shi, W. Zhu, H. Li et al., “Microwave-accelerated esterification of salicylic acid using Br?nsted acidic ionic liquids as catalysts,” Catalysis Communications, vol. 11, no. 7, pp. 588–591, 2010.
[30]  M. Moniruzzaman, K. Nakashima, N. Kamiya, and M. Goto, “Recent advances of enzymatic reactions in ionic liquids,” Biochemical Engineering Journal, vol. 48, no. 3, pp. 295–314, 2010.
[31]  K.-P. Zhang, J. Q. Lai, Z.-L. Huang, and Z. Yang, “Penicillium expansum lipase-catalyzed production of biodiesel in ionic liquids,” Bioresource Technology, vol. 102, no. 3, pp. 2767–2772, 2011.
[32]  Z. Yang, K.-P. Zhang, Y. Huang, and Z. Wang, “Both hydrolytic and transesterification activities of Penicillium expansum lipase are significantly enhanced in ionic liquid [BMIm][PF6],” Journal of Molecular Catalysis B, vol. 63, no. 1-2, pp. 23–30, 2010.
[33]  A. Kurata, S. Takemoto, T. Fujita, K. Iwai, M. Furusawa, and N. Kishimoto, “Synthesis of 3-cyclohexylpropyl caffeate from 5-caffeoylquinic acid with consecutive enzymatic conversions in ionic liquid,” Journal of Molecular Catalysis B, vol. 69, no. 3-4, pp. 161–167, 2011.
[34]  H. Watanabe, “The study of factors influencing the depolymerisation of cellulose using a solid catalyst in ionic liquids,” Carbohydrate Polymers, vol. 80, no. 4, pp. 1168–1171, 2010.
[35]  H.-Y. Shen, Z. M. A. Judeh, C. B. Ching, and Q.-H. Xia, “Comparative studies on alkylation of phenol with tert-butyl alcohol in the presence of liquid or solid acid catalysts in ionic liquids,” Journal of Molecular Catalysis A, vol. 212, no. 1-2, pp. 301–308, 2004.
[36]  Z. Zhang and Z. K. Zhao, “Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid,” Carbohydrate Research, vol. 344, no. 15, pp. 2069–2072, 2009.
[37]  R. Saladino, R. Bernini, V. Neri, and C. Crestini, “A novel and efficient catalytic epoxidation of monoterpenes by homogeneous and heterogeneous methyltrioxorhenium in ionic liquids,” Applied Catalysis A, vol. 360, no. 2, pp. 171–176, 2009.
[38]  G. Bianchini, M. Crucianelli, F. D. Angelis, V. Neri, and R. Saladino, “Highly efficient C-H insertion reactions of hydrogen peroxide catalyzed by homogeneous and heterogeneous methyltrioxorhenium systems in ionic liquids,” Tetrahedron Letters, vol. 46, no. 14, pp. 2427–2432, 2005.
[39]  F. Freeman, “Properties and reactions of ylidenemalononitriles,” Chemical Reviews, vol. 80, no. 4, pp. 329–350, 1980.
[40]  L. F. Tietze, “Domino reactions in organic synthesis,” Chemical Reviews, vol. 96, no. 1, pp. 115–136, 1996.
[41]  D. B. Jackson, D. J. Macquarrie, and J. H. Clark, “Organic modification of hexagonal mesoporous silicas,” in Proceedings of the 4th International Symposium on Supported Reagents and Catalysts in Chemistry, 2001.
[42]  L. Martins, K. M. Vieira, L. M. Rios, and D. Cardoso, “Basic catalyzed Knoevenagel condensation by FAU zeolites exchanged with alkylammonium cations,” Catalysis Today, vol. 133–135, no. 1–4, pp. 706–710, 2008.
[43]  K. M. Parida, S. Mallick, P. C. Sahoo, and S. K. Rana, “A facile method for synthesis of amine-functionalized mesoporous zirconia and its catalytic evaluation in Knoevenagel condensation,” Applied Catalysis A, vol. 381, no. 1-2, pp. 226–232, 2010.
[44]  B. Karmakar, B. Chowdhury, and J. Banerji, “Mesoporous titanosilicate Ti-TUD-1 catalyzed Knoevenagel reaction: an efficient green synthesis of trisubstituted electrophilic olefins,” Catalysis Communications, vol. 11, no. 7, pp. 601–605, 2010.
[45]  F. Shang, J. Sun, S. Wu, Y. Yang, Q. Kan, and J. Guan, “Direct synthesis of acid-base bifunctional mesoporous MCM-41 silica and its catalytic reactivity in Deacetalization-Knoevenagel reactions,” Microporous and Mesoporous Materials, vol. 134, no. 1–3, pp. 44–50, 2010.
[46]  K. M. Parida and D. Rath, “Amine functionalized MCM-41: an active and reusable catalyst for Knoevenagel condensation reaction,” Journal of Molecular Catalysis A, vol. 310, no. 1-2, pp. 93–100, 2009.
[47]  L. Martins, W. H?lderich, P. Hammer, and D. Cardoso, “Preparation of different basic Si-MCM-41 catalysts and application in the Knoevenagel and Claisen-Schmidt condensation reactions,” Journal of Catalysis, vol. 271, no. 2, pp. 220–227, 2010.
[48]  F. Shang, J. Sun, S. Wu, Y. Yang, Q. Kan, and J. Guan, “Direct synthesis of acid-base bifunctional mesoporous MCM-41 silica and its catalytic reactivity in Deacetalization-Knoevenagel reactions,” Microporous and Mesoporous Materials, vol. 134, no. 1–3, pp. 44–50, 2010.
[49]  G. Postole, B. Chowdhury, B. Karmakar, K. Pinki, J. Banerji, and A. Auroux, “Knoevenagel condensation reaction over acid-base bifunctional nanocrystalline CexZr1-xO2 solid solutions,” Journal of Catalysis, vol. 269, no. 1, pp. 110–121, 2010.
[50]  N. T. S. Phan and C. W. Jones, “Highly accessible catalytic sites on recyclable organosilane-functionalized magnetic nanoparticles: an alternative to functionalized porous silica catalysts,” Journal of Molecular Catalysis A, vol. 253, no. 1-2, pp. 123–131, 2006.
[51]  M. Trilla, R. Pleixats, M. W. C. Man, and C. Bied, “Organic-inorganic hybrid silica materials containing imidazolium and dihydroimidazolium salts as recyclable organocatalysts for Knoevenagel condensations,” Green Chemistry, vol. 11, no. 11, pp. 1815–1820, 2009.
[52]  J. Gascon, U. Aktay, M. D. Hernandez-Alonso, G. P. M. van Klink, and F. Kapteijn, “Amino-based metal-organic frameworks as stable, highly active basic catalysts,” Journal of Catalysis, vol. 261, no. 1, pp. 75–87, 2009.
[53]  U. P. N. Tran, K. K. A. Le, and N. T. S. Phan, “Expanding applications of metal?organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction,” ACS Catalysis, vol. 1, no. 2, pp. 120–127, 2011.
[54]  M. J. Gronnow, R. Luque, D. J. Macquarrie, and J. H. Clark, “A novel highly active biomaterial supported palladium catalyst,” Green Chemistry, vol. 7, no. 7, pp. 552–557, 2005.
[55]  S. E. S. Leonhardt, A. Stolle, B. Ondruschka et al., “Chitosan as a support for heterogeneous Pd catalysts in liquid phase catalysis,” Applied Catalysis A, vol. 379, no. 1-2, pp. 30–37, 2010.
[56]  K. Martina, S. E. S. Leonhardt, B. Ondruschka, M. Curini, A. Binello, and G. Cravotto, “In situ cross-linked chitosan Cu(I) or Pd(II) complexes as a versatile, eco-friendly recyclable solid catalyst,” Journal of Molecular Catalysis A, vol. 334, no. 1-2, pp. 60–64, 2011.
[57]  B. C. E. Makhubela, A. Jardine, and G. S. Smith, “Pd nanosized particles supported on chitosan and 6-deoxy-6-amino chitosan as recyclable catalysts for Suzuki-Miyaura and Heck cross-coupling reactions,” Applied Catalysis A, vol. 393, no. 1-2, pp. 231–241, 2010.
[58]  T. C. O. Mac Leod, V. Palaretti, V. P. Barros, A. L. Faria, T. A. Silva, and M. D. Assis, “Jacobsen catalyst immobilized on chitosan membrane as interface catalyst in organic/aqueous system for alkene oxidation,” Applied Catalysis A, vol. 361, no. 1-2, pp. 152–159, 2009.
[59]  N. Sudheesh, S. K. Sharma, and R. S. Shukla, “Chitosan as an eco-friendly solid base catalyst for the solvent-free synthesis of jasminaldehyde,” Journal of Molecular Catalysis A, vol. 321, no. 1-2, pp. 77–82, 2010.
[60]  R. S. Varma and V. V. Namboodiri, “An expeditious solvent-free route to ionic liquids using microwaves,” Chemical Communications, vol. 7, pp. 643–644, 2001.
[61]  J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser, and R. D. Rogers, “Room temperature ionic liquids as novel media for “clean” liquid-liquid extraction,” Chemical Communications, no. 16, pp. 1765–1766, 1998.
[62]  R. Valentin, K. Molvinger, F. Quignard, and D. Brunel, “Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry,” New Journal of Chemistry, vol. 27, no. 12, pp. 1690–1692, 2003.
[63]  Z. Liu, H. Bai, and D. D. Sun, “Facile fabrication of porous chitosan/TiO2/Fe3O4 microspheres with multifunction for water purifications,” New Journal of Chemistry, vol. 35, no. 1, pp. 137–140, 2011.
[64]  C. Lau, M. J. Cooney, and P. Atanassov, “Conductive macroporous composite chitosan-carbon nanotube scaffolds,” Langmuir, vol. 24, no. 13, pp. 7004–7010, 2008.
[65]  A. El Kadib, K. Molvinger, C. Guimon, F. Quignard, and D. Brunel, “Design of stable nanoporous hybrid chitosan/titania as cooperative bifunctional catalysts,” Chemistry of Materials, vol. 20, no. 6, pp. 2198–2204, 2008.
[66]  Y. Kanai, T. Oshima, and Y. Baba, “Synthesis of highly porous chitosan microspheres anchored with 1,2-ethylenedisulfide moiety for the recovery of precious metal ions,” Industrial & Engineering Chemistry Research, vol. 47, no. 9, pp. 3114–3120, 2008.
[67]  B. Kang, Y. D. Dai, H. Q. Zhang, and D. Chen, “Synergetic degradation of chitosan with gamma radiation and hydrogen peroxide,” Polymer Degradation and Stability, vol. 92, no. 3, pp. 359–362, 2007.
[68]  C. Bangyekan, D. Aht-Ong, and K. Srikulkit, “Preparation and properties evaluation of chitosan-coated cassava starch films,” Carbohydrate Polymers, vol. 63, no. 1, pp. 61–71, 2006.
[69]  B. Klaykruayat, K. Siralertmukul, and K. Srikulkit, “Chemical modification of chitosan with cationic hyperbranched dendritic polyamidoamine and its antimicrobial activity on cotton fabric,” Carbohydrate Polymers, vol. 80, no. 1, pp. 197–207, 2010.
[70]  G. Ma, D. Yang, Y. Zhou, M. Xiao, J. F. Kennedy, and J. Nie, “Preparation and characterization of water-soluble N-alkylated chitosan,” Carbohydrate Polymers, vol. 74, no. 1, pp. 121–126, 2008.
[71]  S. Sabnis and L. H. Block, “Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan,” Polymer Bulletin, vol. 39, no. 1, pp. 67–71, 1997.
[72]  P. Formentín, H. Garc?ía, and A. Leyva, “Assessment of the suitability of imidazolium ionic liquids as reaction medium for base-catalysed reactions: case of Knoevenagel and Claisen-Schmidt reactions,” Journal of Molecular Catalysis A, vol. 214, no. 1, pp. 137–142, 2004.
[73]  F. Santamarta, P. Verdía, and E. Tojo, “A simple, efficient and green procedure for Knoevenagel reaction in [MMIm][MSO4] ionic liquid,” Catalysis Communications, vol. 9, no. 8, pp. 1779–1781, 2008.
[74]  Y. Kubota, Y. Nishizaki, H. Ikeya et al., “Organic-silicate hybrid catalysts based on various defined structures for Knoevenagel condensation,” Microporous and Mesoporous Materials, vol. 70, no. 1–3, pp. 135–149, 2004.
[75]  Y. Liu, J. Liang, X. H. Liu, J. C. Fan, and Z. C. Shang, “Polyethylene glycol (PEG) as a benign solvent for Knoevenagel condensation,” Chinese Chemical Letters, vol. 19, no. 9, pp. 1043–1046, 2008.
[76]  G. Langhendries, D. E. De Vos, G. V. Baron, and P. A. Jacobs, “Quantitative sorption experiments on Ti-zeolites and relation with α-olefin oxidation by H2O2,” Journal of Catalysis, vol. 187, no. 2, pp. 453–463, 1999.
[77]  D. J. Macquarrie and D. B. Jackson, “Aminopropylated MCMs as base catalysts: a comparison with aminopropylated silica,” Chemical Communications, no. 18, pp. 1781–1782, 1997.
[78]  I. Rodriguez, G. Sastre, A. Corma, and S. Iborra, “Catalytic activity of proton sponge: application to knoevenagel condensation reactions,” Journal of Catalysis, vol. 183, no. 1, pp. 14–23, 1999.
[79]  A. Corma, S. Iborra, I. Rodriguez, and F. Sanchez, “Immobilized proton sponge on inorganic carriers the synergic effect of the support on catalytic activity,” Journal of Catalysis, vol. 211, no. 1, pp. 208–215, 2002.
[80]  M. J. Climent, A. Corma, I. Domínguez, S. Iborra, M. J. Sabater, and G. Sastre, “Gem-diamines as highly active organocatalysts for carbon-carbon bond formation,” Journal of Catalysis, vol. 246, no. 1, pp. 136–146, 2007.
[81]  J. Juan-Alca?iz, E. V. Ramos-Fernandez, U. Lafont, J. Gascon, and F. Kapteijn, “Building MOF bottles around phosphotungstic acid ships: one-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts,” Journal of Catalysis, vol. 269, no. 1, pp. 229–241, 2010.
[82]  F. Dong, Y. Q. Li, and R. F. Dai, “Knoevenagel condensation catalysed by poly(vinyl chloride) supported tetraethylenepentamine (PVC-TEPA),” Chinese Chemical Letters, vol. 18, no. 3, pp. 266–268, 2007.
[83]  A. Pande, K. Ganesan, A. K. Jain, P. K. Gupta, and R. C. Malhotra, “A novel eco-friendly process for the synthesis of 2-chlorobenzylidenemalononitrile and its analogues using water as a solvent,” Organic Process Research and Development, vol. 9, no. 2, pp. 133–136, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133