全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

-SDS- System: A highly Efficient Dual Catalytic Green System for Deprotection of Imines and in Situ Preparation of Bis(indolyl)alkanes from Indoles in Water

DOI: 10.5402/2012/635835

Full-Text   Cite this paper   Add to My Lib

Abstract:

A novel catalytic system consisting of I2-SDS-H2O has been developed which cleaves 2,3-diaza-1,3-butadiene, 1-aza-1,3-butadienes, oximes and in presence of indoles in the medium uses the corresponding aldehyde products to produce bis(indolyl)alkanes in situ. This one pot simple and mild dual catalytic system works in water at room temperature under neutral conditions. 1. Introduction Using water as solvent in the organic reactions is one of the most important targets to organic chemists because of the easy availability, nontoxicity, and ecofriendly nature of the water [1–7]. In this endeavour, a number of chemical reactions such as Diels Alder, hetero Diels-Alder, 1,3-dipolar cycloaddition, oxidations, reductions, and others are performed successfully in water [1–3]. Also, it is reported that in few cases addition of the water increases the rate and the yield of a reaction and also enhances the enantioselectivity in a chiral synthesis [8]. But the main problems associated with water as a solvent is its poor ability to solubilise organic reactants and incapability to create anhydrous condition for moisture sensitive organic compounds and catalysts. To overcome the solubility problem, generally a surfactant is introduced to the reaction mixture. The surfactant, due to its hydrophobic and hydrophilic nature, forms micelles with water insoluble organic compounds and promote the desired reactions to occur inside the hydrophobic ambience of the micelle core [9, 10]. Cleavage of the C=N bonds is a very important transformation in organic synthesis as the C=N functionality is widely used to protect both the carbonyl and amines. There are a number of methods used for the cleavage of C=N bonds which include acidic reagents [11–13], oxidizing agents [14], metallic salts [15, 16], (PhSeO)2O [17], NaHSO3 [18], and others. Most of these methodologies suffer from serious drawbacks like involvement of strong Lewis and Bronsted acids, use of toxic and costly transition metals (i.e., Cr, Pd, Co), low temperature, longer reaction time, low yield, and difficulties in isolating the products. Therefore, development of efficient, mild and environment friendly reagents are always necessary. On the other hand, bisindoles are recently emerging as extremely important class of compounds because of their novel antibacterial and anticancer activities [19–21]. That is why a number of methodologies have also been postulated for the synthesis of bisindoles [22–29]. In our previous communications, we reported that surfactant- (SDS-) mediated cleavage of C=N bonds could be achieved with

References

[1]  P. A. Grieco, Organic Synthesis in Water, Blackie Academic and Professional, London, UK, 1998.
[2]  C. J. Li and T. H. Chan, Organic Reactions in Aqueous Media, John Wiley & Sons, New York, NY, USA, 1997.
[3]  U. M. Lindstr?m, “Stereoselective organic reactions in water,” Chemical Reviews, vol. 102, no. 8, pp. 2751–2772, 2002.
[4]  S. Kobayashi and K. Manabe, “Development of novel Lewis acid catalysts for selective organic reactions in aqueous media,” Accounts of Chemical Research, vol. 35, no. 4, pp. 209–217, 2002.
[5]  P. Tundo and P. T. Anastas, Green Chemistry: Challenging Perspectives, Oxford University Press, Oxford, UK, 2000.
[6]  P. T. Anastas and T. C. Williamson, Green Chemistry, Frontiers in Benign Chemical Syntheses and Processes, Oxford University Press, New York, NY, USA, 1998.
[7]  R. A. Sheldon, “Green solvents for sustainable organic synthesis: state of the art,” Green Chemistry, vol. 7, no. 5, pp. 267–278, 2005.
[8]  S. Ribe and P. Wipf, “Water-accelerated organic transformations,” Chemical Communications, no. 4, pp. 299–307, 2001.
[9]  Y. Mori, Micelles: Theoretical and Applied Aspects, Springer, 1992.
[10]  S. Ta?cio?lu, “Micellar solutions as reaction media,” Tetrahedron, vol. 52, no. 34, pp. 11113–11152, 1996.
[11]  M. P. Doyle, M. A. Zaleta, J. E. Deboer, and W. Wierenga, “Reactions of the nitrosonium ion. V. Nitrosative cleavage of the carbon-nitrogen double bond. The attempted exchange of oxygen for nitrogen,” Journal of Organic Chemistry, vol. 38, no. 9, pp. 1663–1667, 1973.
[12]  E. J. Corey, P. B. Hopkins, S. Kim, S.-E. Yoo, K. P. Nambiar, and J. R. Falck, “Total synthesis of erythromycins. 5. Total synthesis of erythronolide A,” Journal of the American Chemical Society, vol. 101, no. 23, pp. 7131–7134, 1979.
[13]  A. S. Culf, J. A. Melanson, R. J. Ouellette, and G. G. Briand, “Bis-imine primary amine protection of the dialkyltriamine, norspermidine,” Tetrahedron Letters, vol. 53, no. 26, pp. 3301–3304, 2012.
[14]  G. H. Imanzadeh, A. R. Hajipour, and S. E. Mallakpour, “Solid state cleavage of oximes with potassium permanganate supported on alumina,” Synthetic Communications, vol. 33, no. 5, pp. 735–740, 2003.
[15]  P. M. Bendale and B. M. Khadilkar, “Microwave promoted regeneration of carbonyl compounds from oximes using silica supported chromium trioxide,” Tetrahedron Letters, vol. 39, no. 32, pp. 5867–5868, 1998.
[16]  T. Respondek, E. Cueny, and J. J. Kodanko, “Cumyl ester as the C-terminal protecting group in the enantioselective alkylation of glycine benzophenone imine,” Organic Letters, vol. 14, no. 1, pp. 150–153, 2012.
[17]  D. H. R. Barton, D. J. Lester, and S. V. Ley, “Regeneration of ketones from hydrazones, oximes, and semicarbazones by benzeneseleninic anhydride,” Journal of the Chemical Society, Chemical Communications, no. 13, pp. 445–446, 1977.
[18]  S. H. Pines, J. M. Chemerda, and M. A. Kozlowski, “Cleavage of oximes with bisulfite. A general procedure,” Journal of Organic Chemistry, vol. 31, no. 10, pp. 3446–3447, 1966.
[19]  C. G. Yang, H. Huang, and B. Jiang, “Progress in studies of novel marine bis(indole) alkaloids,” Current Organic Chemistry, vol. 8, no. 17, pp. 1691–1720, 2004.
[20]  R. G. Panchal, R. L. Ulrich, D. Lane et al., “Novel broad-spectrum bis-(imidazolinylindole) derivatives with potent antibacterial activities against antibiotic-resistant strains,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 10, pp. 4283–4291, 2009.
[21]  A. Andreani, S. Burnelli, M. Granaiola et al., “Antitumor activity of bis-indole derivatives,” Journal of Medicinal Chemistry, vol. 51, no. 15, pp. 4563–4570, 2008.
[22]  M. Chakrabarty, N. Ghosh, R. Basak, and Y. Harigaya, “Dry reaction of indoles with carbonyl compounds on montmorillonite K10 clay: a mild, expedient synthesis of diindolylalkanes and vibrindole A,” Tetrahedron Letters, vol. 43, no. 22, pp. 4075–4078, 2002.
[23]  R. Nagarajan and P. T. Perumal, “InCl3 and In(OTf)3 catalyzed reactions: synthesis of 3-acetyl indoles, bis-indolylmethane and indolylquinoline derivatives,” Tetrahedron, vol. 58, no. 6, pp. 1229–1232, 2002.
[24]  S. J. Ji, S. Y. Wang, Y. Zhang, and T. P. Loh, “Facile synthesis of bis-(indolyl)methanes using catalytic amount of iodine at room temperature under solvent-free conditions,” Tetrahedron, vol. 60, no. 9, pp. 2051–2055, 2004.
[25]  B. P. Bandgar and K. A. Shaikh, “Molecular iodine-catalyzed efficient and highly rapid synthesis of bis(indolyl)methanes under mild conditions,” Tetrahedron Letters, vol. 44, no. 9, pp. 1959–1961, 2003.
[26]  L. Wang, J. Han, H. Tian, J. Sheng, Z. Fan, and X. Tang, “Rare earth perfluorooctanoate [RE(PFO)3]-catalyzed condensations of indole with carbonyl compounds,” Synlett, no. 2, pp. 337–339, 2005.
[27]  T. J. K. Gibbs and N. C. O. Tomkinson, “Aminocatalytic preparation of bisindolylalkanes,” Organic & Biomolecular Chemistry, vol. 3, no. 22, pp. 4043–4045, 2005.
[28]  S. Ko, C. Lin, Z. Tu, Y. F. Wang, C. C. Wang, and C. F. Yao, “CAN and iodine-catalyzed reaction of indole or 1-methylindole with α,β-unsaturated ketone or aldehyde,” Tetrahedron Letters, vol. 47, no. 4, pp. 487–492, 2006.
[29]  M. L. Deb and P. J. Bhuyan, “An efficient and clean synthesis of bis(indolyl)methanes in a protic solvent at room temperature,” Tetrahedron Letters, vol. 47, no. 9, pp. 1441–1443, 2006.
[30]  S. D. Sharma, P. Gogoi, M. Boruah, and D. Konwar, “SDS/Ac2O/H2O: surfactant-mediated cleavage of imines with acetic anhydride to carbonyls and acetanilides in water,” Synthetic Communications, vol. 37, no. 15, pp. 2473–2481, 2007.
[31]  P. Gogoi, P. Hazarika, and D. Konwar, “Surfactant/I2/water: an efficient system for deprotection of oximes and imines to carbonyls under neutral conditions in water,” Journal of Organic Chemistry, vol. 70, no. 5, pp. 1934–1936, 2005.
[32]  P. Hazarika, S. Das Sharma, and D. Konwar, “Efficient synthesis of bis- and tris-indolylalkanes catalyzed by a Br?nsted acid-surfactant catalyst in water,” Synthetic Communications, vol. 38, no. 17, pp. 2870–2880, 2008.
[33]  A. Hazra, P. Paira, K. B. Sahu, S. Banerjee, and N. B. Mondal, “Molecular iodine: an efficient catalyst ofr the synthesis of both symmetirical and unsymmetrical triindolylmethanes,” Catalysis Communications, vol. 9, pp. 1681–1684, 2008.
[34]  A. I. Vogel and B. S. Furniss, Vogel’S Textbook of Practical Organic ChemiStry, Longman Sci. Tech., Harlow, UK, 5th edition, 1989.
[35]  H. Chalaye-Mauger, J. N. Denis, M. T. Averbuch-Pouchot, and Y. Vallée, “The reactions of nitrones with indoles,” Tetrahedron, vol. 56, no. 5, pp. 791–804, 2000.
[36]  P. A. S. Smith, Open Chain Nitrogen Compounds, vol. 2, chapter 9, Benzamin, New York, NY, USA, 1966.
[37]  D. Prajapati, J. S. Sandhu, T. Kametani, H. Nagase, K. Kawai, and T. Honda, “Dipolar cycloadditions of nitrile imines with aldazines,” Heterocycles, vol. 23, no. 5, pp. 1123–1126, 1985.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133