A series of novel 4-amino-5-mercapto-3-[(3-aralkyl amido/imidoalkyl) phenyl]-1,2,4-triazoles (5a-d) were obtained by treating m-(aralkyl amido/imidoalkyl) benzoic acid hydrazides (3a-d) with carbon disulphide in alcoholic KOH and hydrazine hydrate, respectively. These triazole derivatives were employed in the synthesis of 5-[(3′-aralkyl amido/imidoalkyl) phenyl]-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines (6a-d). The newly synthesized compounds were evaluated for their antiviral activity against two animal viruses, namely, Japanese encephalitis virus (JEV) strain P20778 and herpes simplex virus-1 (HSV-1) strain 753166. 1. Introduction Heterocycles bearing a symmetrical triazole or 1,2,4-triazole scaffold are the structural element of many drugs that have diverse pharmacological activity. The 1,2,4-triazole derivatives are extensively applicable in medicine, namely, alprazolam (tranquilizer), estazolam (hypnotic, sedative, and tranquilizer), rilmazafone (hypnotic, anxiolytic, used in the case of neurotic insomnia), benatradin (diuretic), trapidil (hypotensive), trazodone (antidepressant, anxiolytic), etoperidone (antidepressant), nefazodone (antidepressant, 5-HT2A-antagonist), anastrozole (antineoplastic, nonsteroidal aromatase inhibitor), letrozole (antineoplastic, aromatase inhibitor), ribavirin (antiviral), fluconazole, itraconazole, terconazole (antifungal), and so forth [1]. Furthermore, biheterocyclic compounds bearing a triazole moiety and another heterocyclic moiety combined in one molecular union are also eminent to possess broad spectrum of biological activities, one such imperative being triazolo thiadiazine derivatives [2]. Substituted 1,2,4-triazolo-1,3,4-thiadiazines are reported to possess antifungal, antibacterial, and anticancer activities [3–6]. Additional bioactivity shown by such molecules includes antitubercular, anti-inflammatory, and antimolluscicidal [7, 8]. Significant antiviral activity of such compounds has not been attained however, but the extensive range of the biological effects exhibited by them has engrossed scientists to work on their antiviral effects [9, 10]. Moreover, reports on the activity of triazolo thiadiazines on viruses such as herpes simplex virus (HSV-1) and Japanese encephalitis virus (JEV) are rare. With no established antiviral therapies available, the only way of prevention is vaccination that is in vogue since the safety of their administration is questionable in certain individuals [11]. Our current endeavor in this direction is therefore the synthesis of a series of 5-[(3′-aralkyl amido/imidoalkyl)
References
[1]
S. P. Ayta?, B. Tozkoparan, F. B. Kaynak, G. Aktay, ?. G?kta?, and S. ünüvar, “Synthesis of 3,6-disubstituted 7H-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines as novel analgesic/anti-inflammatory compounds,” European Journal of Medicinal Chemistry, vol. 44, no. 11, pp. 4528–4538, 2009.
[2]
N. Nami, M. Forozani, V. Khosravimoghadam, and R. Taherinasam, “Synthesis and characterization of mono and bicycle heterocyclic derivatives containing 1,2,4-triazole, 1,3,4-thiadiazine and 1,3-thiazole ring,” E-Journal of Chemistry, vol. 9, no. 1, pp. 161–166, 2012.
[3]
O. Prakash, D. K. Aneja, K. Hussain, et al., “Synthesis and biological evaluation of dihydroindeno and indeno [1,2-e] [1,2,4] triazolo [3,4-b][1, 3, 4] thiadiazines as antimicrobial agents,” European Journal of Medicinal Chemistry, vol. 46, no. 10, pp. 5065–5073, 2011.
[4]
M. Altintop, Z. A. Kaplancikli, G. T. Zitouni, et al., “Synthesis and anticandidal activity of new triazolo thiadiazine derivatives,” European Journal of Medicinal Chemistry, vol. 46, no. 11, pp. 5562–5566, 2011.
[5]
R. Mohammad, S. Ali, R. Mahsa, and B. Mehdi, “Synthesis and antibacterial evaluation of new heterocyclic system: [1,2,4] triazolo-[3′, 4′:6, 1] pyridazino-[4, 3-e] [1,3,4] thiadiazine,” Heterocyclic Communications, vol. 18, no. 1, pp. 39–42, 2012.
[6]
S. M. I. Badr and R. M. Barwa, “Synthesis of some new [1,2,4]triazolo[3,4-b][1,3,4]thiadiazines and [1,2,4]triazolo[3,4-b][1,3,4] thiadiazoles starting from 5-nitro-2-furoic acid and evaluation of their antimicrobial activity,” Bioorganic and Medicinal Chemistry, vol. 19, no. 15, pp. 4506–4512, 2011.
[7]
G. V. S. Kumar, Y. R. Prasad, B. P. Mallikarjuna, and S. M. Chandrashekar, “Synthesis and pharmacological evaluation of clubbed isopropylthiazole derived triazolothiadiazoles, triazolothiadiazines and mannich bases as potential antimicrobial and antitubercular agents,” European Journal of Medicinal Chemistry, vol. 45, no. 11, pp. 5120–5129, 2010.
[8]
M. F. El Shehry, A. A. Abu-Hashem, and E. M. El-Telbani, “Synthesis of 3-((2,4-dichlorophenoxy)methyl)-1,2,4-triazolo(thiadiazoles and thiadiazines) as anti-inflammatory and molluscicidal agents,” European Journal of Medicinal Chemistry, vol. 45, no. 5, pp. 1906–1911, 2010.
[9]
B. S. Holla, P. M. Akberali, and M. K. Shivananda, “Studies on nitrophenylfuran derivatives: part XII. Synthesis, characterization, antibacterial and antiviral activities of some nitrophenylfurfurylidene-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines,” II Farmaco, vol. 56, no. 12, pp. 919–927, 2001.
[10]
N. A. Al-Masoudi and Y. A. Al-Soud, “New sulphonamide and carboxamide derivatives of acyclic C-nucleosides of triazolo-thiadiazole and the thiadiazine analogues. Synthesis, anti-HIV, and antitumor activities. Part 2,” Nucleosides, Nucleotides and Nucleic Acids, vol. 27, no. 9, pp. 1034–1044, 2008.
[11]
K. Dutta, P. N. Rangarajan, S. Vrati, and A. Basu, “Japanese encephalitis: pathogenesis, prophylactics and therapeutics,” Current Science, vol. 98, no. 3, pp. 326–334, 2010.
[12]
R. W. Sidwell and J. H. Huffman, “Use of disposable micro tissue culture plates for antiviral and interferon induction studies,” Applied Microbiology, vol. 22, no. 5, pp. 797–801, 1971.
[13]
R. P. Tripathi, V. Singh, A. R. Khan, and A. P. Bhaduri, “Synthesis and antiviral activities of 3-O-(aminoalkyl)-1, 2-O-isopropylidene-D-gluco(xylo)furanoses,” Indian Journal of Chemistry B, vol. 34, pp. 791–795, 1995.
[14]
E. Bedows and G. M. Hatfield, “An investigation of the antiviral activity of Podophyllum peltatum,” Journal of Natural Products, vol. 45, no. 6, pp. 725–729, 1982.
[15]
V. K. Pandey, S. Yadava, K. Chandra, and M. N. Joshi, “Antiviral studies of 7-arylamido/lmido-alkyl-2,3-dihydro-2,3-diphenyl-1,3-benzoxazine-4-ones,” Indian Drugs, vol. 36, no. 8, pp. 532–534, 1999.
[16]
N. J. Schmidt, Diagnostic Procedure for Viral and Rickettsial Diseases, American Public Health Association, New York, NY, USA, 3rd edition, 1964, edited by E. H. Lennette and N. J. Schmidt.
[17]
L. J. Reed and H. Muench, “A simple method of estimating fifty per cent endpoints,” American Journal of Epidemiology, vol. 27, no. 3, pp. 493–497, 1938.
[18]
V. K. Pandey, S. Tusi, Z. Tusi, M. Joshi, and S. Bajpai, “Synthesis and biological activity of substituted 2,4,6-s-triazines,” Acta Pharmaceutica, vol. 54, no. 1, pp. 1–12, 2004.
[19]
H. K. Gakhar and J. K. Gill, “Pyrimido[4,5-e](1,2,4)-triazolo[3,4-b](1,3,4)-thiadiazine-7,9(6 H8 H)-diones,” Monatshefte für Chemie, vol. 116, no. 5, pp. 633–637, 1985.
[20]
A. Einhorn and J. Tscherniac, Comprehensive Organic Name Reactions and Reagents, John Wiley & Sons, New York, NY, USA, 2010.
[21]
B. R. Nathani, K. S. Pandya, M. M. Jeni, D. J. Patel, and M. R. Patel, “Synthesis and antimicrobial activity of some new isatin derivatives,” Der Chemica Sinica, vol. 2, no. 6, pp. 97–103, 2011.